
Digital image datasets for Precision Agriculture (PA) still need to be available. Many problems in this field of science have been studied to find solutions, such as detecting weeds, counting fruits and trees, and detecting diseases and pests, among others. One of the main fields of research in PA is detecting different crop types with aerial images. Crop detection is vital in PA to establish crop inventories, planting areas, and crop yields and to have information available for food markets and public entities that provide technical help to small farmers. This work proposes public access to a digital image dataset for detecting green onion and foliage flower crops located in the rural area of Medellín City – Colombia. This dataset consists of 245 images with their respective labels: green onion (Allium fistulosum), foliage flowers (Solidago Canadensis and Aster divaricatus), and non-crop areas prepared for planting. A total of 4315 instances were obtained, which were divided into subsets for training, validation, and testing. The classes in the images were labeled with the polygon method, which allows training machine learning algorithms for detection using bounding boxes or segmentation in the COCO format.
remote sensing, Precision agriculture, computer vision
remote sensing, Precision agriculture, computer vision
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
