Powered by OpenAIRE graph
Found an issue? Give us feedback
ZENODOarrow_drop_down
ZENODO
Other ORP type . 2024
License: CC BY
Data sources: Datacite
ZENODO
Other ORP type . 2024
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

Body Maps: Towards 3D Atlas of Human Body

Authors: Li, Wenxuan; Bassi, Pedro Ricardo Ariel Salvador; Tang, Yucheng; Li, Jianning; Zhou, Zongwei; Yuille, Alan; Chou, Yu-Cheng; +17 Authors

Body Maps: Towards 3D Atlas of Human Body

Abstract

Variations in organ sizes and shapes can indicate a range of medical conditions, from benign anomalies to life-threatening diseases. Precise organ volume measurement is fundamental for effective patient care, but manual organ contouring is extremely time-consuming and exhibits considerable variability among expert radiologists. Artificial Intelligence (AI) holds the promise of improving volume measurement accuracy and reducing manual contouring efforts. We formulate our challenge as a semantic segmentation task, which automatically identifies and delineates the boundary of various anatomical structures essential for numerous downstream applications such as disease diagnosis, prognosis, and surgical planning. Our primary goal is to promote the development of AI algorithms and to benchmark the state of the art in this field. The BodyMaps challenge particularly focuses on assessing and improving the generalizability and efficiency of AI algorithms in medical segmentation across diverse clinical settings and patient demographics. In light of this, the innovation of our BodyMaps challenge includes the use of (1) large-scale, diverse datasets for both training and evaluating AI algorithms, (2) novel evaluation metrics that emphasize the accuracy of hard-to-segment anatomical structures, and (3) penalties for algorithms with extended inference times. Specifically, this challenge involves two unique datasets. First, AbdomenAtlas, the largest annotated dataset, contains a total of 9,262 three-dimensional computed tomography (CT) volumes. In each CT volume, 25 anatomical structures are annotated by voxel. AbdomenAtlas is a multi-domain dataset of pre, portal, arterial, and delayed phase CT volumes collected from 88 global hospitals in 9 countries, diversified in age, pathological conditions, body parts, and race background. The AbdomenAtlas dataset will be made available to the public and the participants are encouraged to use any other public/private datasets for training AI algorithms. Second, W-1K is a proprietary collection of 1,000 CT volumes, where 15 anatomical structures are annotated by voxel. The CT volumes and annotations of W-1K will be reserved for external validation of AI algorithms. The final score will be calculated on the W-1K dataset, measuring both segmentation performance and inference speed of the AI algorithms. Note that the segmentation performance will not only be limited to the average segmentation performance but also prioritize the performance of hard-to-segment structures. We hope our BodyMaps challenge can set the stage for larger-scale clinical trials and offer exceptional opportunities to practitioners in the medical imaging community.

Keywords

Computed Tomography, Domain Generalization, MICCAI 2024 challenges, Organ Volume Measurement, Anatomical Structure Segmentation, Domain Adaptation

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average