Downloads provided by UsageCounts
This work is a study on source separation techniques for binaural music mixtures. The chosen framework uses a Convolutional Neural Network (CNN) to estimate time-frequency soft masks. This masks are used to extract the different sources from the original two-channel mixture signal. Its baseline single-channel architecture performed state-of-the-art results on monaural music mixtures under low-latency conditions. It has been extended to perform separation in two-channel signals, being the first two-channel CNN joint estimation architecture. This means that filters are learned for each source by taking in account both channels information. Furthermore, a specific binaural condition is included during training stage. It uses Interaural Level Difference (ILD) information to improve spatial images of extracted sources. Concurrently, we present a novel tool to create binaural scenes for testing purposes. Multiple binaural scenes are rendered from a music dataset of four instruments (voice, drums, bass and others). The CNN framework have been tested for these binaural scenes and compared with monaural and stereo results. The system showed a great amount of adaptability and good separation results in all the scenarios. These results are used to evaluate spatial information impact on separation performance.
Neural Networks, Binaural, Music Source Separation, Audio Source Separation
Neural Networks, Binaural, Music Source Separation, Audio Source Separation
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 27 | |
| downloads | 36 |

Views provided by UsageCounts
Downloads provided by UsageCounts