
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
{"references": ["", "F. Hellmers, P. Ferguson, J. Koropatnick, R. Krull, and A. Margaritis,\n\"Characterization and in vitro cytotoxicity of doxorubicin-loaded \u03b3-\npolyglutamic acid-chitosan composite nanoparticles,\" Biochem. Eng. J.,\nvol.75, pp.72\u201378, Jun. 2013.", "A. Sandler, R. Gray, M. C. Perry, J. Brahmer, J. H. Schiller, A. Dowlati,\nR. Lilenbaum, and D. H. Johnson, \"Paclitaxel-carboplatin alone or with\nbevacizumab for non-small-cell lung cancer,\" N. Engl. J. Med., vol.355,\nno. 24, pp.2542\u20132550, Dec. 2006.", "B. Manocha and A. Margaritis, \"Controlled Release of Doxorubicin\nfrom Doxorubicin/\u03b3-Polyglutamic Acid Ionic Complex,\" J. Nanomat.,\nvol.2010, p.9, 2010.", "D. J. Slamon, \"Use of chemotherapy plus a monoclonal antibody against\nHER2 for metastatic breast cancer that overexpresses HER2,\" N. Engl.\nJ. Med., vol.344, no. 11, pp.783\u2013792, 2001.", "R. S. Herbst, G. Giaccone, J. H. Schiller, R. B. Natale, V. Miller, C.\nManegold, G. Scagliotti, R. Rosell, I. Oliff, J. a Reeves, M. K. Wolf, A.\nD. Krebs, S. D. Averbuch, J. S. Ochs, J. Grous, A. Fandi, and D. H.\nJohnson, \"Gefitinib in combination with paclitaxel and carboplatin in\nadvanced non-small-cell lung cancer: a phase III trial-Intact 2,\" J. Clin.\nOncol., vol.22, no. 5, pp.785\u2013794, Mar. 2004.", "L. Papucci, N. Schiavone, E. Witort, M. Donnini, A. Lapucci, A.\nTempestini, L. Formigli, S. Zecchi-Orlandini, G. Orlandini, G. Carella,\nR. Brancato, and S. Capaccioli, \"Coenzyme q10 prevents apoptosis by\ninhibiting mitochondrial depolarization independently of its free radical\nscavenging property,\" J. Biol. Chem., vol.278, no. 30, pp.28220\u201328228,\nJul. 2003.", "K. Apel and H. Hirt, \"Reactive oxygen species: metabolism, oxidative\nstress, and signal transduction,\" Annu. Rev. Plant Biol., vol.55, pp.373\u2013\n399, Jan. 2004.", "R. K. Chaturvedi and M. F. Beal, \"Mitochondrial approaches for\nneuroprotection,\" Ann. N. Y. Acad. Sci., vol.1147, pp.395\u2013412, Dec.\n2008.", "F. L. Crane, \"Biochemical functions of coenzyme Q10,\" J. Am. Coll.\nNutr., vol.20, no. 6, pp.591\u2013598, 2001.\n[10] J. Pardeike, S. Weber, N. Matsko, and A. Zimmer, \"Formation of a\nphysical stable delivery system by simply autoclaving nanostructured\nlipid carriers (NLC),\" Int. J. Pharm., vol.439, no. 1\u20132, pp.22\u201327, Dec.\n2012.\n[11] H. Bunjes, \"Lipid nanoparticles for the delivery of poorly water-soluble\ndrugs,\" J. Pharm. Pharmacol., vol.62, no. 11, pp.1637\u20131645, Nov.\n2010.\n[12] A. J. Almeida and E. Souto, \"Solid lipid nanoparticles as a drug delivery\nsystem for peptides and proteins,\" Adv. Drug Deliv. Rev., vol.59, no. 6,\npp.478\u2013490, Jul. 2007.\n[13] W. Mehnert and K. M\u00e4der, \"Solid lipid nanoparticles,\" Adv. Drug Deliv.\nRev., vol.64, pp.83\u2013101, Dec. 2012.\n[14] W. Mehnert and K. M\u00e4der, \"Solid lipid nanoparticles: production,\ncharacterization and applications.,\" Adv. Drug Deliv. Rev., vol.47, no. 2\u2013\n3, pp.165\u2013196, Apr. 2001.\n[15] K. Shakesheff, C. Evora, I. Soriano, and R. Langer, \"The Adsorption of\nPoly(vinyl alcohol) to Biodegradable Microparticles Studied by X-Ray\nPhotoelectron Spectroscopy (XPS),\" J. Colloid Interface Sci., vol.185,\nno. 2, pp.538\u2013547, Jan. 1997.\n[16] J. Kreuter, \"Nanoparticulate systems for brain delivery of drugs,\" Adv.\nDrug Deliv. Rev., vol.47, no. 1, pp.65\u201381, Mar. 2001.\n[17] I. F. Uchegbu and S. P. Vyas, \"Non-ionic surfactant based vesicles\n(niosomes) in drug delivery,\" Int. J. Pharm., vol.172, no. 1\u20132, pp.33\u201370,\nOct. 1998.\n[18] V. P. Torchilin, \"Structure and design of polymeric surfactant-based\ndrug delivery systems,\" J. Control. Release, vol.73, no. 2\u20133, pp.137\u2013\n172, Jun. 2001.\n[19] R. G. Strickley, \"Solubilizing excipients in oral and injectable\nformulations,\" Pharm. Res., vol.21, no. 2, pp.201\u2013230, Feb. 2004.\n[20] R. Gref, A. Dombb, P. Quelled, T. Blunk, R. H. Miillerd, J. M.\nVerbavatz, and R. Langerf, \"The controlled intravenous delivery of\ndrugs using PEG-coated sterically stabilized nanospheres,\" Adv. Drug\nDeliv. Rev., vol.16, pp.215\u2013233, 1995.\n[21] H. Lv, S. Zhang, B. Wang, S. Cui, and J. Yan, \"Toxicity of cationic\nlipids and cationic polymers in gene delivery,\" J. Control. Release,\nvol.114, no. 1, pp.100\u2013109, Aug. 2006.\n[22] M. Huang, E. Khor, and L.-Y. Lim, \"Uptake and cytotoxicity of chitosan\nmolecules and nanoparticles: effects of molecular weight and degree of\ndeacetylation,\" Pharm. Res., vol.21, no. 2, pp.344\u2013353, Feb. 2004.\n[23] Alakhov VYu, Moskaleva EYu, E. V Batrakova, and a V Kabanov,\n\"Hypersensitization of multidrug resistant human ovarian carcinoma\ncells by pluronic P85 block copolymer,\" Bioconjugate Chem., vol.7, no.\n2, pp.209\u2013216, 1996.\n[24] B. Manocha and A. Margaritis, \"A novel Method for the selective\nrecovery and purification of \u03b3-polyglutamic acid from Bacillus\nlicheniformis fermentation broth,\" Biotechnol. Prog., vol.26, no. 3,\npp.734\u2013742, 2010.\n[25] A. Richard and A. Margaritis, \"Rheology, oxygen transfer, and\nmolecular weight characteristics of poly(glutamic acid) fermentation by\nBacillus subtilis,\" Biotechnol. Bioeng., vol.82, no. 3, pp.299\u2013305, May\n2003.\n[26] J. M. Buescher and A. Margaritis, \"Microbial biosynthesis of\npolyglutamic acid biopolymer and applications in the biopharmaceutical,\nbiomedical and food industries,\" Crit. Rev. Biotech., vol.27, no. 1, pp.1\u2013\n19, 2007.\n[27] I. Bajaj and R. Singhal, \"Poly (glutamic acid) - An emerging biopolymer\nof commercial interest,\" Bioresource Technol., vol.102, no. 10,\npp.5551\u20135561, May 2011.\n[28] A. Richard and A. Margaritis, \"Poly(glutamic acid) for biomedical\napplications,\" Crit. Rev. Biotech., vol.21, no. 4, pp.219\u2013232, Jan. 2001.\n[29] D. Hudson and A. Margaritis, \"Biopolymer nanoparticle production for\ncontrolled release of biopharmaceuticals,\" Crit. Rev. Biotech., pp.1\u201319,\nJan. 2012.\n[30] M. Kambourova, M. Tangney, and G. Fergus, \"Regulation of\nPolyglutamic Acid Synthesis by Glutamate in Bacillus licheniformis and\nBacillus subtilis Regulation of Polyglutamic Acid Synthesis by\nGlutamate in Bacillus licheniformis and Bacillus subtilis,\" Appl.\nEnviron. Microbiol., vol.67, pp.1004\u20131007, 2001.\n[31] G. A. Kunioka M, \"Biosynthesis of poly(\u03b3-glutamic acid) from Lglutamic\nacid, citric acid, and ammonium sulfate in Bacillus subtilis\nIFO3335,\" Appl. Microbiol. Biotechnol., vol.6, pp.867\u2013872, 1994.\n[32] T. Akagi, M. Higashi, T. Kaneko, T. Kida, and M. Akashi, \"Hydrolytic\nand Enzymatic Degradation of Nanoparticles Based on Amphiphilic\nPoly(gamma-glutamic acid)-graft-L-Phenylalanine Copolymers,\"\nBiomacromolecules, vol.7, no. 1, pp.297\u2013303, Jan. 2006.\n[33] T. Akagi, T. Kaneko, T. Kida, and M. Akashi, \"Preparation and\ncharacterization of biodegradable nanoparticles based on poly(gammaglutamic\nacid) with l-phenylalanine as a protein carrier,\" J. Control.\nRelease, vol.108, no. 2\u20133, pp.226\u2013236, Nov. 2005.\n[34] F. Branda, B. Silvestri, G. Luciani, A. Costantini, and F. Tescione,\n\"Synthesis structure and stability of amino functionalized PEGylated\nsilica nanoparticles,\" Coll. Surf. A, vol.367, no. 1\u20133, pp.12\u201316, Sep.\n2010.\n[35] L. H. Reddy and R. S. R. Murthy, \"Etoposide-loaded nanoparticles made\nfrom glyceride lipids: formulation, characterization, in vitro drug\nrelease, and stability evaluation.,\" AAPS PharmSciTech, vol.6, no. 2,\npp.E158\u2013E166, Jan. 2005.\n[36] B. Zhao and Z. Nan, \"Preparation of stable magnetic nanofluids\ncontaining Fe3O4@PPy nanoparticles by a novel one-pot route,\"\nNanoscale Res. Lett., vol.6, no. 1, pp.230\u2013238, Jan. 2011.\n[37] S. Hohmann, Yeast stress responses. 2003, p.387.\n[38] N. A. Elliott and M. R. Volkert, \"Stress Induction and Mitochondrial\nLocalization of Oxr1 Proteins in Yeast and Humans,\" Mol. Cell. Biol.,\nvol.24, no. 8, pp.3180\u20133187, 2004.\n[39] W. Dr\u00f6ge, \"Free radicals in the physiological control of cell function,\"\nPhysiol. Rev., vol.82, no. 1, pp.47\u201395, Jan. 2002.\n[40] A. H\u00f6hn, J. K\u00f6nig, and T. Grune, \"Protein oxidation in aging and the\nremoval of oxidized proteins,\" J. Proteomics, Jan. 2013.\n[41] D. J. Jamieson, \"Oxidative stress responses of the yeast Saccharomyces\ncerevisiae,\" Yeast, vol.14, no. 16, pp.1511\u20131527, Dec. 1998.\n[42] L. L. Ji, \"Antioxidants and oxidative stress in exercise,\" Proc. Soc. Exp.\nBiol. Med., vol.222, no. 44453, pp.283\u2013292, 1999.\n[43] V. Mugoni, R. Postel, V. Catanzaro, E. De Luca, E. Turco, G. Digilio, L.\nSilengo, M. P. Murphy, C. Medana, D. Y. R. Stainier, J. Bakkers, and\nM. M. Santoro, \"Ubiad1 is an antioxidant enzyme that regulates eNOS\nactivity by CoQ10 synthesis,\" Cell, vol.152, no. 3, pp.504\u2013518, Jan.\n2013.\n[44] A. Navarro and A. Boveris, \"The mitochondrial energy transduction\nsystem and the aging process,\" Am. J. Physiol. Cell Physiol., vol.292,\nno. 2, pp.C670\u2013C686, Feb. 2007.\n[45] J. Gruber, S. Fong, C.-B. Chen, S. Yoong, G. Pastorin, S. Schaffer, I.\nCheah, and B. Halliwell, \"Mitochondria-targeted antioxidants and\nmetabolic modulators as pharmacological interventions to slow ageing.,\"\nBiotechnol. Adv., Sep. 2012."]}
Oxidative stress makes up common incidents in eukaryotic metabolism. The presence of diverse components disturbing the equilibrium during oxygen metabolism increases oxidative damage unspecifically in living cells. Body´s own ubiquinone (Q10) seems to be a promising drug in defending the heightened appearance of reactive oxygen species (ROS). Though, its lipophilic properties require a new strategy in drug formulation to overcome their low bioavailability. Consequently, the manufacture of heterogeneous nanodispersions is in focus for medical applications. The composition of conventional nanodispersions is made up of a drug-consisting core and a surfactive agent, also named as surfactant. Long-termed encapsulation of the surfactive components into tissues might be the consequence of the use during medical therapeutics. The potential of provoking side-effects is given by their nonbiodegradable properties. Further improvements during fabrication process use the incorporation of biodegradable components such as modified γ-polyglutamic acid which decreases the potential of prospective side-effects.
Biopolymers, Oxidative stress, Ubiquinone., γ-Polyglutamic acid
Biopolymers, Oxidative stress, Ubiquinone., γ-Polyglutamic acid
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 2 | |
downloads | 4 |