<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this release version, we present Aeolus 2.0, an open-source numerical atmosphere model and a two-layer version of the improved moist-convective Rotating Shallow Water (2imcRSW) model. This particular iteration of Aeolus 2.0 stands as a self-contained model of intermediate complexity. The model's dynamical core is underpinned by a multi-layer pseudo-spectral moist-convective Thermal Rotating Shallow Water (mcTRSW) model. The pseudo-spectral problem-solving tasks are handled by the Dedalus algorithm, acknowledged for its spin-weighted spherical harmonics. The model captures the temporal and spatial evolution of vertically integrated potential temperature, thickness, water vapor, precipitation, and the influence of bottom topography. It comprehensively characterizes velocity fields in both the lower and upper troposphere, employing resolutions spanning a spectrum from the smooth to the coarse, enabling the exploration of a wide range of dynamic phenomena with varying levels of detail and precision. For inquiries regarding access to the most recent iteration of the model, installation procedures, initialization tailored to specific scientific endeavors, diverse methodologies concerning scaling and nondimensionalization, as well as opportunities for scientific collaboration, please do not hesitate to contact Dr. Masoud Rostami via email at rostami@pik-potsdam.de or masoud.rostami@lmd.ipsl.fr.
Atmosphere Dynamics, Atmosphere Science, Shallow Water Model, Aeolus 2.0, Rotating Shallow Water Model, Potsdam Institute for Climate Impact Research (PIK), Atmosphere Model, Thermal Shallow Water Model, Moist Convection
Atmosphere Dynamics, Atmosphere Science, Shallow Water Model, Aeolus 2.0, Rotating Shallow Water Model, Potsdam Institute for Climate Impact Research (PIK), Atmosphere Model, Thermal Shallow Water Model, Moist Convection
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |