Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2024
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (Cross-Model Version-SSP5-RCP8.5)

Authors: Chowdhury, Shovan; Li, Fengqi; Stubbings, Avery; New, Joshua; Rastogi, Deeksha; Kao, Shih-Chieh;

Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County in CONUS (Cross-Model Version-SSP5-RCP8.5)

Abstract

As global emissions and temperatures continue to rise, global climate models offer projections as to how the climate will change in years to come. These model projections can be used for a variety of end-uses to better understand how current systems will be affected by the changing climate. While climate models predict every individual year, using a single year may not be representative as there may be outlier years. It can also be useful to represent a multi-year period with a single year of data. Both items are currently addressed when working with past weather data by a using Typical Meteorological Year (TMY)methodology. This methodology works by statistically selecting representative months from a number of years and appending these months to achieve a single representative year for a given period. In this analysis, the TMY methodology is used to develop Future Typical Meteorological Year (fTMY) using climate model projections. The resulting set of fTMY data is then formatted into EnergyPlus weather (epw) fi les that can be used for building simulation to estimate the impact of climate scenarios on the built environment. This dataset contains the cross-climate-model version fTMY files for 3281 US Counties in the continental United States. The data for each county is derived from six different global climate models (GCMs) from the 6th Phase of Coupled Models Intercomparison Project CMIP6-ACCESSCM2, BCC-CSM2-MR, CNRM-ESM2-1, MPI-ESM1-2-HR, MRI-ESM2-0, NorESM2-MM. The six climate models were statistically downscaled for 1980–2014 in the historical period and 2015–2100 in the future period under the SSP585 scenario using the methodology described in Rastogi et al. (2022). Additionally, hourly data was derived from the daily downscaled output using the Mountain Microclimate Simulation Model (MTCLIM; Thornton and Running, 1999). The shared socioeconomic pathway (SSP) used for this analysis was SSP 5 and the representative concentration pathway (RCP) used was RCP 8.5. More information about SSP and RCP can be referred to O'Neill et al. (2020). More information about the six selected CMIP6 GCMs: ACCESS-CM2 -http://dx.doi.org/10.1071/ES19040BCC-CSM2-MR -https://doi.org/10.5194/gmd-14-2977-2021CNRM-ESM2-1-https://doi.org/10.1029/2019MS001791MPI-ESM1-2-HR -https://doi.org/10.5194/gmd-12-3241-2019MRI-ESM2-0 -https://doi.org/10.2151/jmsj.2019-051NorESM2-MM -https://doi.org/10.5194/gmd-13-6165-2020 Additional references:O'Neill, B. C., Carter, T. R., Ebi, K. et al. (2020). Achievements and Needs for the Climate Change Scenario Framework.Nat. Clim. Chang. 10, 1074–1084 (2020). https://doi.org/10.1038/s41558-020-00952-0Rastogi, D., Kao, S.-C., and Ashfaq, M. (2022). How May the Choice of Downscaling Techniques and Meteorological Reference Observations Affect Future Hydroclimate Projections? Earth's Future, 10, e2022EF002734. https://doi.org/10.1029/2022EF002734Thornton, P. E. and Running, S. W. (1999). An Improved Algorithm for Estimating Incident Daily Solar Radiation from Measurements of Temperature, Humidity and Precipitation, Agricultural and Forest Meteorology, 93, 211-228. Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New (2023). “Multi-Model Future Typical Meteorological (fTMY) Weather Files for nearly every US County.” The 3rd ACM International Workshop on Big Data and Machine Learning for Smart Buildings and Cities and BuildSys '23: The 10th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation, Istanbul, Turkey, November 15-16, 2023. DOI: 10.1145/3600100.3626637 Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2023). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County (West and Midwest)." ORNL internal Scientific and Technical Information (STI) report, doi:10.5281/zenodo.8338549, Sept 2023. [Data] Shovan Chowdhury, Fengqi Li, Avery Stubbings, Joshua R. New, Deeksha Rastogi, and Shih-Chieh Kao (2023). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation for every US County (East and South)." ORNL internal Scientific and Technical Information (STI) report, doi:10.5281/zenodo.8335815, Sept 2023. [Data] Bass, Brett, New, Joshua R., Rastogi, Deeksha and Kao, Shih-Chieh (2022). "Future Typical Meteorological Year (fTMY) US Weather Files for Building Simulation (1.0) [Data set]." Zenodo, doi.org/10.5281/zenodo.6939750, Aug. 2022. [Data]

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average