
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
{"references": ["S.-Y. M. Pang, S. Tristram, and S. Brown, \"Salicylhydroxamic acid\ninhibits the growth of Candida albicans,\" International Journal of\nBiological and Life Sciences, vol. 6, pp. 40-46, 2010.", "A. M. Tortorano, J. Peman, H. Bernhardt, L. Klingspor, C. C. Kibbler,\nO. Faure, E. Biraghi, E. Canton, K. Zimmermann, S. Seaton, and R.\nGrillot, \"Epidemiology of candidaemia in Europe: results of 28-month\nEuropean Confederation of Medical Mycology (ECMM) hospital-based\nsurveillance study,\" European Journal of Clinical Microbiology and\nInfectious Diseases, vol. 23, pp. 317-322, 2004.", "M. A. Pfaller, R. N. Jones, G. V. Doern, H. S. Sader, S. A. Messer, A.\nHouston, S. Coffman, and R. J. Hollis, \"Bloodstream infections due to\nCandida species: SENTRY Antimicrobial Surveillance Program in North\nAmerica and Latin America, 1997-1998,\" Antimicrobial Agents and\nChemotherapy, vol. 44, pp. 747-751, 2000.", "O. Gudlaugsson, S. Gillespie, K. Lee, J. Vande Berg, J. Hu, S. Messer,\nL. Herwaldt, M. Pfaller, and D. Diekema, \"Attributable mortality of\nnosocomial candidemia, revisited,\" Clinical Infectious Diseases, vol. 37,\npp. 1172-1177, 2003.", "N. Sen and H. K. Majumder, \"Mitochondrion of protozoan parasite\nemerges as potent therapeutic target: exciting drugs are on the horizon,\"\nCurrent Pharmaceutical Design, vol. 14, pp. 839-846, 2008.", "A. Veiga, J. D. Arrabaca, and M. C. Loueiro-Dias, \"Stress situations\ninduce cyanide-resistant respiration in spoilage yeasts,\" Journal of\nApplied Microbiology, vol. 95, pp. 364-371, 2003.", "V. N. Popov, R. A. Simonian, V. P. Skulachev, and A. A. Starkov,\n\"Inhibition of the alternative oxidase stimulates H2O2 production in\nplant mitochondria,\" FEBS Letters, vol. 415, pp. 87-90, 1997.", "S.-Y. M. Pang, S. Tristram, and S. Brown, \"An in silico model of the\nalternative oxidase,\" International Journal of Biosciences and\nTechnology, vol. 2, pp. 139-148, 2009.", "R. M. Nervig and S. Kadis, \"Effect of hydroxamic acids on growth and\nurease activity in Corynebacterium renale,\" Canadian Journal of\nMicrobiology, vol. 22, pp. 544-551, 1976.\n[10] C. Y. Wang and L. H. Lee, \"Mutagenicity and antibacterial activity of\nhydroxamic acids,\" Antimicrobial Agents and Chemotherapy, vol. 11,\npp. 753-755, 1977.\n[11] L. Yan, M. Li, Y. Cao, P. Gao, Y. Cao, Y. Wang, and Y. Jiang, \"The\nalternative oxidase of Candida albicans causes reduced fluconazole\nsusceptibility,\" Journal of Antimicrobial Chemotherapy, vol. to be\npublished, 2009.\n[12] J. J. Gavin, \"Analytical microbiology. II. The diffusion methods,\"\nApplied Microbiology, vol. 5, pp. 25-33, 1957.\n[13] S. Budavari, \"The Merck Index,\" 12 ed. Whitehouse Station: Merck &\nCo., Inc., 1996.\n[14] A.-E. A. Salem and M. M. Omar, \"Atomic absorption and\nspectrophotometric determinations of salicylhydroxamix acid in its pure\nand pharmeceutical dosage forms,\" Turkish Journal of Chemistry, vol.\n27, pp. 383-393, 2003.\n[15] D. H. Pincus, D. C. Coleman, W. R. Pruitt, A. A. Padhye, I. F. Salkin,\nM. Geimer, A. Bassel, D. J. Sullivan, M. Clarke, and V. Hearn, \"Rapid\nidentification of Candida dubliniensis with commercial yeast\nidentification systems,\" Journal of Clinical Microbiology, vol. 37, pp.\n3533-3539, 1999.\n[16] M. B. Smith, D. Dunklee, H. Vu, and G. L. Woods, \"Comparative\nperformance of the RapID Yeast Plus System and the API 20C AUX\nClinical Yeast System,\" Journal of Clinical Microbiology, vol. 37, pp.\n2697-2698, 1999.\n[17] S. Bernal, M. E. Mart\u251c\u00a1n, M. Garc\u251c\u00a1a, A. I. Aller, M. A. Mart\u251c\u00a1nez, and M.\nJ. Guti\u00e9rrez, \"Evaluation of CHROMagar Candida medium for the\nisolation and presumptive identification of species of Candida of clinical\nimportance,\" Diagnostic Microbiology and Infectious Disease, vol. 24,\npp. 201-204, 1996.\n[18] D. Sullivan and D. Coleman, \"Candida dubliniensis: characteristics and\nidentification,\" Journal of Clinical Microbiology, vol. 36, pp. 329-334,\n1998.\n[19] R Development Core Team, \"R: A language and environment for\nstatistical computing.\" Vienna, Austria: R Foundation for Statistical\nComputing, 2006.\n[20] S. Brown and N. L. Taylor, \"Inhibition of mitochondrial electron transfer\nby antipsychotic medication,\" Human and Veterinary Toxicology, vol.\n42, pp. 209-211, 2000.\n[21] F. J. Richards, \"A flexible growth function for empirical use,\" Journal of\nExperimental Botany, vol. 10, pp. 290-301, 1959.\n[22] A. P. Damoglou, R. K. Buick, and M. F. Patterson, \"Evaluation of\ndifferent strategies for building and displaying models to describe\nbacterial growth in foods,\" IMA Journal of Mathematics Applied in\nBusiness & Industry, vol. 5, pp. 349-361, 1995.\n[23] S. Brown, \"Two implications of common models of microbial growth,\"\nANZIAM Journal, vol. 49, pp. C230-C242, 2007.\n[24] J. N. Siedow and A. L. Moore, \"A kinetic model for the regulation of\nelectron transfer through the cyanide-resistant pathway in plant\nmitochondria,\" Biochimica et Biophysica Acta, vol. 1142, pp. 165-174,\n1993.\n[25] H. Lambers, \"Cyanide-resistant respiration: a non-phosphorylating\nelectron transport pathway acting as an energy overflow,\" Physiologia\nPlantarum, vol. 55, pp. 478-485, 1982.\n[26] G. G. Laties, \"The cyanide-resistant, alternative path in higher\nplant respiration,\" Annual Review of Plant Physiology, vol. 33, pp. 519-\n555, 1982.\n[27] J. T. Bahr and W. D. Bonner, Jr., \"Cyanide-insensitive respiration. II.\nControl of the alternate pathway,\" Journal of Biological Chemistry, vol.\n248, pp. 3446-3450, 1973.\n[28] J. B. Hiskey and V. M. Sanchez, \"Mechanistic and kinetic aspects of\nsilver dissolution in cyanide solutions,\" Journal of Applied\nElectrochemistry, vol. 20, pp. 479-487, 1990.\n[29] B. K. Davis, \"Diffusion in polymer gel implants,\" Proceedings of the\nNational Academy of Sciences of the USA, vol. 71, pp. 3120-3123,\n1974.\n[30] L. Friedman, \"Structure of agar gels from studies of diffusion,\" Journal\nof the American Chemical Society, vol. 52, pp. 1311-1314, 1930.\n[31] N. Fatin-Rogue, K. Starchev, and J. Buffle, \"Size effects on diffusion\nprocesses within agarose gels,\" Biophysical Journal, vol. 86, pp. 2710-\n2719, 2004.\n[32] E. J. Schantz and M. A. Lauffer, \"Diffusion measurements in agar gel,\"\nBiochemistry, vol. 1, pp. 658-663, 1962.\n[33] P. Grunwald, \"Determination of effective diffusion coefficients - an\nimportant parameter for the efficiency of immobilized biocatalysts,\"\nBiochemical Education, vol. 17, pp. 99-102, 1989.\n[34] R. K. Finn, \"Theory of agar diffusion methods of assay,\" Analytical\nChemistry, vol. 31, pp. 975-977, 1959.\n[35] M. L. Delignette-Muller and J. P. Flandrois, \"An accurate diffusion\nmethod for determining bacterial sensitivity to antibiotics,\" Journal of\nAntimicrobial Chemothrapy, vol. 34, pp. 73-81, 1994.\n[36] A. L. Koch, \"Diffusion through agar blocks of finite dimensions: a\ntheoretical analysis of three systems of practical significance in\nmicrobiology,\" Microbiology, vol. 145, pp. 643-654, 1999."]}
Candida spp. are common and aggressive pathogens. Because of the growing resistance of Candida spp. to current antifungals, novel targets, found in Candida spp. but not in humans or other flora, have to be identified. The alternative oxidase (AOX) is one such possibility. This enzyme is insensitive to cyanide, but is sensitive to compounds such as salicylhydroxamic acid (SHAM), disulfiram and n-alkyl gallates. The growth each of six Candida spp. was inhibited significantly by ~13 mM SHAM or 2 mM cyanide, albeit to differing extents. In C. dubliniensis, C. krusei and C. tropicalis the rate of O2 uptake was inhibited by 18-36% by 25 mM SHAM, but this had little or no effect on C. glabrata, C. guilliermondii or C. parapsilosis. Although SHAM substantially inhibited the growth of Candida spp., it is unlikely that the inhibition of AOX was the cause. Salicylhydroxamic acid is used therapeutically in the treatment of urinary tract infections and urolithiasis, but it also has some potential in the treatment of Candida spp. infection.
alternative oxidase, growth, salicylhydroxamic acid., Candida spp., respiration
alternative oxidase, growth, salicylhydroxamic acid., Candida spp., respiration
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 9 | |
downloads | 4 |