
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
{"references": ["J. H. Holland, \"Adaptation in Natural and Artificial Systems\",\nUniversity of Michigan Press, Ann Arbor, 1975.", "K. A. DeJong, An Analysis of the Behavior of a Class of Genetic\nAdaptive Systems, Ph.D. Thesis, University of Michigan, 1975.", "D. E. Goldberg, Genetic Algorithms in Search, Optimization, and\nMachine Learning, Addison-Wesley, Reading, MA., 1989.", "H. Chen, \"Machine learning for information retrieval: neural networks,\nsymbolic learning, and genetic algorithms\". Journal of the American\nSociety for Information Science, 46(3), 1995, pp. 194-216.", "J. Savoy and D. Vrajitoru, \"Evaluation of learning schemes used in\ninformation retrieval (CR-I-95-02)\". Universite de Neuchatel, Faculte de\ndroit et des Sciences Economiques, 1996.", "M. Gordon, \"Probabilistic and genetic algorithms in document\nretrieval\". Communications of the ACM, 31(10), 1988, pp. 1208-1218.", "J. Yang, R. Korfhage and E. Rasmussen. \"Query improvement in\ninformation retrieval using genetic algorithms--a report on the\nexperiments of the TREC project\". In Proceedings of the 1st text\nretrieval conference (TREC-1), 1992, pp. 31-58.", "J. Morgan and A. Kilgour. \"Personalising on-line information retrieval\nsupport with a genetic algorithm\". In A. Moscardini, & P. Smith (Eds.),\nPolyModel 16: Applications of artificial intelligence, 1996, pp. 142-149.", "M. Boughanem, C. Chrisment, and L. Tamine. \"On using genetic\nalgorithms for multimodal relevance optimization in information\nretrieval\". Journal of the American Society for Information Science and\nTechnology, 53(11), 2002, pp. 934-942.\n[10] J. T. Horng and C. C. Yeh. \"Applying genetic algorithms to query\noptimization in document retrieval\". Information Processing &\nManagement, 36(5), 2000, pp. 737-759.\n[11] D. Vrajitoru. \"Crossover improvement for the genetic algorithm in\ninformation retrieval\". Information Processing& Management, 34(4),\n1998, pp. 405-415.\n[12] D. Vrajitoru. \"Large population or many generations for genetic\nalgorithms? Implications in information retrieval\". In F. Crestani and G.\nPasi (Eds.), Soft computing in information retrieval. Techniques and\napplications, Physica-Verlag, 2000, pp. 199-222.\n[13] D. Harman. \"Overview of the first TREC conference\". In Proceedings of\nthe 16th ACM SIGIR conference on information retrieval, 1993, pp. 36-\n47.\n[14] B. T. Bartell, G. W. Cottrell and R. K. Belew. \"Automatic combination\nof multiple ranked retrieval systems\". In Proceedings of the 17th ACM\nSIGIR conference on information retrieval, 1994, pp. 173-181.\n[15] P. Pathak, M. Gordon and W. Fan. \"Effective information retrieval using\ngenetic algorithms based matching functions adaption\", in: Proc. 33rd\nHawaii International Conference on Science (HICS), Hawaii, USA,\n2000.\n[16] R. Baeza-Yates and B. Ribeiro-Neto. Modern Information Retrieval,\nAdisson, 1999.\n[17] G. Salton and M.H. McGill. Introduction to Modern Information\nRetrieval, McGraw-Hill, 1983.\n[18] C.J. Van Rijsbergen. Information Retrieval, second ed., Butterworth,\n1979.\n[19] A. Bookstein. \"Outline of a general probabilistic retrieval model\",\nJournal of Documentation 39 (2), 1983, pp. 63-72.\n[20] N. Fuhr. \"Probabilistic models in information retrieval\", Computer\nJournal 35 (3), 1992, pp. 243-255.\n[21] C. H. Chang and C. C. Hsu. The design of an information system for\nhypertext retrieval and automatic discovery on WWW. Ph.D. thesis,\nDepartment of CSIE, National Taiwan University, 1999.\n[22] K. L. Kwok. \"Comparing representations in Chinese information\nretrieval\". ACM SIGIR'97, Philadelphia, PA, USA, 1997, pp. 34 -41.\n[23] T. Mitchell. Machine Learning, McGraw-Hill, 1997.\n[24] H. Chen et al., \"A machine learning approach to inductive query by\nexamples: an experiment using relevance feedback, ID3, genetic\nalgorithms, and simulated annealing\", Journal of the American Society\nfor Information Science 49 (8), 1998, pp. 693-705.\n[25] W. Fan, M.D. Gordon and P. Pathak. \"Personalization of search engine\nservices for effective retrieval and knowledge management\", in: Proc.\n2000 International Conference on Information Systems (ICIS), Brisbane,\nAustralia, 2000.\n[26] A.M. Robertson and P. Willet. \"Generation of equifrequent groups of\nwords using a genetic algorithm\", Journal of Documentation 50 (3),\n1994, pp. 213-232.\n[27] M. Gordon. \"Probabilistic and genetic algorithms for document\nretrieval\", Communications of the ACM 31 (10), 1988, pp. 1208-1218.\n[28] W. Fan, M.D. Gordon and P. Pathak. \"Discovery of context-specific\nranking functions for effective information retrieval using genetic\nprogramming\", IEEE Transactions on knowledge and Data Engineering,\nin press.\n[29] M.P. Smith, M. Smith. \"The use of genetic programming to build\nBoolean queries for text retrieval through relevance feedback\", Journal\nof Information Science 23 (6), 1997, pp. 423-431.\n[30] J. Koza. \"Genetic Programming\". On the Programming of Computers by\nmeans of Natural Selection, The MIT Press, 1992.\n[31] J. Yang and R. Korfhage. \"Query modifications using genetic algorithms\nin vector space models\", International Journal of Expert Systems 7 (2),\n1994, pp.165-191.\n[32] H. Kucera and N. Francis. \"Computational analysis of present-day\nAmerican English\". Providence, RD: Brown University Press, 1967.\n[33] M. F. Porter. \"An algorithm for suffix stripping. Program\", 14(3), 1980,\npp. 130-137.\n[34] G. Salton and C. Buckley. \"Improving retrieval performance by\nrelevance feedback\". Journal of the American Society for Information\nScience, 41(4), 1990, pp. 288-297.\n[35] T. Noreault, M. McGill and M. B. Koll. \"A performance evaluation of\nsimilarity measures, document term weighting schemes and\nrepresentation in a Boolean environment\". Information retrieval\nresearch. London: Butterworths, 1981."]}
This study investigates the use of genetic algorithms in information retrieval. The method is shown to be applicable to three well-known documents collections, where more relevant documents are presented to users in the genetic modification. In this paper we present a new fitness function for approximate information retrieval which is very fast and very flexible, than cosine similarity fitness function.
Genetic Algorithm, Information Retrieval, Fitness function, Query learning., Cosine similarity
Genetic Algorithm, Information Retrieval, Fitness function, Query learning., Cosine similarity
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 2 | |
downloads | 3 |