<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
This refers to the gan-generated dataset for the paper" CSI4Free: GAN-Augmented mmWave CSI forImproved Pose Classification. Abstract:In recent years, Joint Communication and Sensing (JC&S), has demonstrated significant success, particularly in utilizing sub-6 GHz frequencies with commercial-off-the-shelf (COTS) Wi-Fi devices for applications such as localization, gesture recognition, and pose classification. Deep learning and the existence of large public datasets has been pivotal in achieving such results. However, at mmWave frequencies (30-300 GHz), which has shown potential for more accurate sensing performance, there is a noticeable lack of research in the domain of COTS Wi-Fi sensing. Challenges such as limited research hardware, the absence of large datasets, limited functionality in COTS hardware, and the complexities of data collection present obstacles to a comprehensive exploration of this field. In this work, we aim to address these challenges by developing a method that can generate synthetic mmWave channel state information (CSI) samples. In particular, we use a generative adversarial network (GAN) on an existing dataset, to generate 30,000 additional CSI samples. The augmented samples exhibit a remarkable degree of consistency with the original data, as indicated by the notably high GAN-train and GAN-test scores. Furthermore, we integrate the augmented samples in training a pose classification model. We observe that the augmented samples complement the real data and improve the generalization of the classification model. The repository is available here: https://github.com/nisarnabeel/Dataset-GAN-Augmented-mmWave-CSI-for-improved-pose-classification Paper Link:https://ieeexplore.ieee.org/document/10646223/
Computer. Automation, Economics, Mass communications
Computer. Automation, Economics, Mass communications
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |