Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2024
License: CC BY
Data sources: ZENODO
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Exemplary ecodesign of a smartphone based on a parametric life cycle assessment - Database (Excel)

Authors: Richter, Nikolai;

Exemplary ecodesign of a smartphone based on a parametric life cycle assessment - Database (Excel)

Abstract

This study presents the development of a novel ecodesign approach based on a parametric life cycle assessment (LCA). The developed method allows for the comparison of environmental impacts of a vast number of different product configurations, which are derived automatically by determining every possible combination of the given design options. The life cycle model features a stochastic failure and repair simulation to account for a wide range of use cases as well as a recycling simulation that can determine the environmentally optimal recycling route. The developed method is tested on an exemplary case study of a smartphone. Despite efficiency limitations of the accompanying software tool prototype that was developed and used for the case study, it could be shown that the method allows to identify the environmental influence of different design options as well as the product configuration with the least annual global warming potential. This file contains the database Excel file with data and calculations on failure and repair statistics, material compositions, and input tables for the software tool prototype developed in the study. It can be inspected as is to understand the underlying data and procedure presented in the study or used as an input for the Python source code to run the LCA model, which can be found here: 10.5281/zenodo.10611008 Note: References to licensed environmental datasets from the Sphera and ecoinvent databases have been deleted in the published version. In order to run the software tool, please add the respective values for the Global Warming Potential (or alternative impact categories) in the "processes_data" sheet and delete the suffix "_noLCIA" from the file name.

Related Organizations
Keywords

Ecodesign, Design for Recycling, Obsolescence, LCA, Design for Repair

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average