
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
{"references": ["Mustafa O, Ediz P. A color image segmentation approach for contentbased\nimage retrieval. Pattern Recognition, 2007.40(4):1318-1325", "Haim P, Joseph F, Ian J. A study of Gaussian mixture models of color\nand texture features for image classification and segmentation. Pattern\nRecognition, 2006.39(4):695-706", "Li, W, You J, Zhang D. Texture-based palm print retrieval using a\nlayered search scheme for personal identification. IEEE Transcations on\nMultimedia, 2005.7(5), 891-898", "A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain.\nContent-based image retrieval at the end of the early years. IEEE Trans.\nPattern Anal. Machine Intell., 22(12):1349-1380, December 2000.", "D. G. Brown. The evaluation of computer-aided diagnosis systems: An\nFDA perspective. In 30th Applied Imagery Pattern Recognition\nWorkshop, 2001.", "A. Smeulder, M. Worring, S. Santini, A. Gupta, and R. Jain,\n\"Contentbased image retrieval at the end of the early years,\" IEEE\nTrans. Pattern Anal. Mach. Intell., vol. 22, no. 12, pp. 1349-1380, Dec.\n2003.", "A. W. M. Smeulders, M. Worring, S. Santini, A. Gupta, and R. Jain.\nContent-based image retrieval at the end of the early years. IEEE Trans.\nPattern Anal. Machine Intell., 22(12):1349-1380, December 2000.", "H. M\u251c\u255dller, N. Michoux, D. Bandon, and A. Geissbuhler. A review of\ncontent-based image retrieval systems in medical applications - clinical\nbenefits and future directions. Int-l J. of Medical Informatics, 73(1):1-\n23, 2004.", "H. M\u251c\u255dller, A. Rosset, A. Garcia, J.-P. Vall\u00e9e, and A. Geissbuhler.\nInformatics in radiology (inforad): Benefits of content-based visual data\naccess in radiology. RadioGraphics, 19:33-54, 2005.\n[10] P. Buitelaar, M. Sintek, and M. Kiesel. A lexicon model for\nmultilingual/multimedia ontologies. Proc. 3rd EuropeanSemantic Web\nConference (ESWC06), June 2006.\n[11] M. Romanelli, P. Buitelaar, and M. Sintek. Modeling linguistic facets of\nmultimedia content for semantic annotation. In Proc. Int-l Conf.\nSemantics & digital Media Tech., December 2007.\n[12] W. Hong, B. Georgescu, X. S. Zhou, S. Krishnan, Y. Ma, and D.\nComaniciu. Database-guided simultaneous multi-slice 3D segmentation\nfor volumetric data. In European Conf. Computer Vision, volume 3954,\npages 397-409, May 2006.\n[13] A. Jerebko, G. Schmidt, X. Zhou, J. Bi, V. Anand, J. Liu, S. Schoenberg,\nI. Schmuecking, B. Kiefer, and A. Krishnan. Computer-aided detection\nof skeletal metastases in MRI STIR imaging of the spine. In Proc. Info.\nProcessing in Medical Imaging (IPMI), 2007.\n[14] Z. Tu, X. S. Zhou, L. Bogoni, A. Barbu, and D. Comaniciu.Probabilistic\n3D polyp detection in CT images: The role of sample alignment. IEEE\nCVPR, 2:1544-1551, May 2006.\n[15] M. Sermesant, C. Forest, X. Pennec, H. Delingette, and N. Ayache.\nDeformable biomechanical models: Application to 4D cardiac image\nanalysis. Med. Image Anal, 7, 2003.\n[16] X. S. Zhou, D. Comaniciu, and A. Gupta. An information fusion\nframework for robust shape tracking. IEEE Trans.Pattern Anal. Machine\nIntell., 27(1):115-129, 2005\n[17] T. Deselaers, D. Keysers, and H. Ney. FIRE - flexible image retrieval\nengine: ImageCLEF 2004 evaluation. In CLEF 2004, LNCS 3491, pages\n688-698, September 2004..\n[18] M. M. Rahman, B. C. Desai, and P. Bhattacharya, \"Medical Image\nRetrieval with Probabilistic Multi-Class Support Vector Machine\nClassifiers and Adaptive Similarity Fusion,\" Computerized Medical\nImaging and Graphics, (Publisher: Elsevier). Accepted for\npublication.2007.\n[19] Rahman MM, Sood V, Desai BC, Bhattacharya P. CINDI at Image\nCLEF 2006: image retrieval & annotation tasks for the general\nphotographic and medical image collections. In: Evaluation of\nmultilingual and multi-modal information retrieval\u00d4\u00c7\u00f6seventh workshop\nof the cross-language evaluation forum (CLEF 2006); 2007. Proc LNCS\n2006; 4730:715-24.\n[20] M. M. Rahman, Bipin C. Desai, Prabir Bhattacharya, \"Multi-Modal\nInteractive Approach to Image CLEF 2007 Photographic and Medical\nRetrieval Tasks by CINDI,\" Working Notes of the 2007 CLEF\nWorkshop, Sep., 2007, Budapest, Hungary.,\n[21] A. Blum and T. Mitchell, \"Combining labeled and unlabeled data with\ncotraining,\" COLT: Proceedings of the Workshop on Computational\nLearning Theory.\n[22] T. K. Ho, \"The random subspace method for constructing\ndecisionforests,\" IEEE Trans. Pattern Anal. Mach. Intell., vol. 20, no. 8,\npp.832-844, Aug. 1998.\n[23] M. M. Rahman, Varun Sood, Bipin C. Desai, Prabir Bhattacharya,\n\"Cross-Modal Interaction and Integration with Relevance Feedback for\nMedical Image Retrieval ,\" 13th International Multimedia Modeling\nConference (MMM 2007), Singapore, Jan 9-12, 2007, Proceedings of\nLNCS,\n[24] Feature for image retrieval: an experimental comparison: Thomas\nDeselaere. Keysers. Ney Dec 2007 Springer Science Media 2007\n[25] M. M. Rahman, P. Bhattacharya and B. C. Desai, \"A Framework for\nMedical Image Retrieval using Machine Learning & Statistical\nSimilarity Matching Techniques with Relevance Feedback,\" IEEE\nTrans. On Information Technology In Biomedicine, (Special Issue on\nImage Management in Healthcare Enterprises), vol. 11, no. 1, pp. 59-69,\n2007.\n[26] H.D. Tagare, C. Jaffe, J. Duncan, Medical image databases: a contentbased\nretrieval approach, J. Am. Med. Informatics Assoc. 4 (3) (1997)\n184\u00d4\u00c7\u00f6198.\n[27] B. Kaplan, H.P. Lundsgaarde, Toward an evaluation of an integrated\nclinical imaging system: Identifying clinical benefits, Methods Inform.\nMed. 35 (1996) 221\u00d4\u00c7\u00f6229.\n[28] T. Lehmann, M. G\u251c\u255dld, C. Thies, B. Fischer, K. Spitzer, D. Keysers, H.\nNey, M. Kohnen, H. Schubert, and B. Wein.Content-based image\nretrieval in medical applications. Methods Inf. Med., 43, 2004.\n[29] J. Vompras. Towards adaptive ontology-based image retrieval. In 17th\nGI-Workshop on the Foundations of Databases, W\u00f6rlitz, Germany,\npages 148-152, May 2005.\n[30] G. T. Papadopoulosa, V. Mezaris, S. Dasiopoulou, and I. Kompatsiaris.\nSemantic image analysis using a learning approach and spatial context.\nIn Proc. 1st Int-l Conf.Semantics & digital Media Tech., December\n2006.\n[31] L. Su, B. Sharp, and C. Chibelushi. Knowledge-based image\nunderstanding: A rule-based production system for X-ray segmentation.\nIn Proc. Int-l Conf. Enterprise Info. System, volume 1, pages 530-533,\nSpain, April 2002.\n[32] A. Mechouche, C. Golbreich, and B. Gibaud. Towards an hybrid system\nusing an ontology enriched by rules for the semantic annotation of brain\nMRI images. In Lecture Notes Computer Sci., volume 4524, pages 219-\n228, June 2007.\n[33] S. Patwardhan, A. Dhawan, and P. Relue. Classification of melanoma\nusing tree structured wavelet transforms. Computer Methods and\nPrograms in Biomedicine, 72(3):223-239, 2003.\n[34] P. Schmidt-Saugeon, J. Guillod, and J.-P. Thiran. Towards a computeraided\ndiagnosis system for pigmented skin lesions.Computerized Med.\nImaging & Graphics, 27:65-78, 2003.\n[35] X. S. Zhou, Y. Rui, and T. S. Huang. Exploration of Visual Data.\nKluwer Academic Publishers, 2003."]}
In recent years, rapid advances in software and hardware in the field of information technology along with a digital imaging revolution in the medical domain facilitate the generation and storage of large collections of images by hospitals and clinics. To search these large image collections effectively and efficiently poses significant technical challenges, and it raises the necessity of constructing intelligent retrieval systems. Content-based Image Retrieval (CBIR) consists of retrieving the most visually similar images to a given query image from a database of images[5]. Medical CBIR (content-based image retrieval) applications pose unique challenges but at the same time offer many new opportunities. On one hand, while one can easily understand news or sports videos, a medical image is often completely incomprehensible to untrained eyes.
support vector machine (SVM)., relevance feedback (RF), Classification, statistical similarity matching, content-based image retrieval (CBIR), clustering
support vector machine (SVM)., relevance feedback (RF), Classification, statistical similarity matching, content-based image retrieval (CBIR), clustering
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 1 | |
downloads | 6 |