Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2017
License: CC BY
Data sources: Datacite
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2017
License: CC BY
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2017
License: CC BY
Data sources: ZENODO
ZENODO
Dataset . 2017
License: CC BY
Data sources: Datacite
ZENODO
Dataset . 2017
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data Set For The Paper Predicting Relevance Of Change Recommendations

Authors: Rolfsnes, Thomas; Moonen, Leon; Binkley, David;

Data Set For The Paper Predicting Relevance Of Change Recommendations

Abstract

Data set for the paper Predicting Relevance of Change Recommendations by Thomas Rolfsnes, Leon Moonen, and David Binkley, In International Conference on Automated Software Engineering (ASE), pp. 694–705. 2017, IEEE. Please cite this work by referring to the corresponding conference publication (a preprint is included in this package). Abstract: Software change recommendation seeks to suggest artifacts (e.g., files or methods) that are related to changes made by a developer, and thus identifies possible omissions or next steps. While one obvious challenge for recommender systems is to produce accurate recommendations, a complimentary challenge is to rank recommendations based on their relevance. In this paper, we address this challenge for recommendation systems that are based on evolutionary coupling. Such systems use targeted association-rule mining to identify relevant patterns in a software system's change history. Traditionally, this process involves ranking artifacts using interestingness measures such as confidence and support. However, these measures often fall short when used to assess recommendation relevance. We propose the use of random forest classification models to assess recommendation relevance. This approach improves on past use of various interestingness measures by learning from previous change recommendations. We empirically evaluate our approach on fourteen open source systems and two systems from our industry partners. Furthermore, we consider complimenting two mining algorithms: CO-CHANGE and TARMAQ. The results find that random forest classification significantly outperforms previous approaches, receives lower Brier scores, and has superior trade-off between precision and recall. The results are consistent across software system and mining algorithm.

This work is supported by the Research Council of Norway through the EvolveIT project (#221751/F20) and the Certus SFI (#203461/030). Dr. Binkley is supported by NSF grant IIA-1360707 and a J. William Fulbright award.

Related Organizations
Keywords

recommendation confidence,evolutionary coupling,random forests,targeted association rule mining

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 6
  • 6
    views
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
0
Average
Average
Average
6