Downloads provided by UsageCounts
Cell-to-cell gene expression variability is an inherent feature of complex biological systems, such as immunity and development. Single-cell RNA sequencing is a powerful tool to quantify this heterogeneity, but it is prone to strong technical noise. In this article, we describe a step-by-step computational workflow that uses the BASiCS Bioconductor package to robustly quantify expression variability within and between known groups of cells (such as experimental conditions or cell types). BASiCS uses an integrated framework for data normalisation, technical noise quantification and downstream analyses, propagating statistical uncertainty across these steps. Within a single seemingly homogeneous cell population, BASiCS can identify highly variable genes that exhibit strong heterogeneity as well as lowly variable genes with stable expression. BASiCS also uses a probabilistic decision rule to identify changes in expression variability between cell populations, whilst avoiding confounding effects related to differences in technical noise or in overall abundance. Using a publicly available dataset, we guide users through a complete pipeline that includes preliminary steps for quality control, as well as data exploration using the scater and scran Bioconductor packages. The workflow is accompanied by a Docker image that ensures the reproducibility of our results.
Software Tool Article, Sequence Analysis, RNA, Gene Expression Profiling, Humans, Computational Biology, Single-Cell Analysis, Software, Workflow
Software Tool Article, Sequence Analysis, RNA, Gene Expression Profiling, Humans, Computational Biology, Single-Cell Analysis, Software, Workflow
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 5 | |
| downloads | 2 |

Views provided by UsageCounts
Downloads provided by UsageCounts