Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Other literature type . 2023
License: CC BY
Data sources: ZENODO
ZENODO
Other literature type . 2023
License: CC BY
Data sources: Datacite
ZENODO
Other literature type . 2023
License: CC BY
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

SHAKING THINGS UP - THE SCIENCE BEHIND GROUND MOTION PREDICTION EQUATIONS IN SEISMIC ENGINEERING

Authors: Brandl, Edenilson;

SHAKING THINGS UP - THE SCIENCE BEHIND GROUND MOTION PREDICTION EQUATIONS IN SEISMIC ENGINEERING

Abstract

Seismic engineering, a vital field at the intersection of science, engineering, and disaster mitigation, relies on Ground Motion Prediction Equations (GMPEs) to assess earthquake risk and design resilient structures. This article delves into the intricate science behind GMPEs, shedding light on their core principles. GMPEs draw from historical seismic data, geological insights, and mathematical modeling to predict ground motions during earthquakes. They are the result of interdisciplinary collaboration and continue to evolve with advances in data collection and computational capabilities. GMPEs find diverse applications, from seismic hazard analysis to earthquake early warning systems, guiding land-use planning and retrofitting decisions. They play a pivotal role in reducing uncertainties in ground motion predictions and have region-specific models tailored to geological variations. Open-source GMPE models promote knowledge sharing, contributing to global efforts to enhance seismic resilience. This article empowers professionals and enthusiasts with a deeper appreciation of GMPEs' role in safeguarding structures, communities, and lives in the face of seismic threats. Der Artikel erörtert den kritischen Bereich der Erdbebentechnik und die zentrale Rolle, die Ground Motion Prediction Equations (GMPEs) bei der Erdbebenrisikobewertung und der Tragwerksplanung spielen. Es unterstreicht den interdisziplinären Charakter der GMPE-Entwicklung, die Entwicklung von GMPEs im Laufe der Zeit, ihre Anpassungsfähigkeit an verschiedene Kontexte und die Bedeutung von Daten und kontinuierlichen Aktualisierungen bei ihrer Verfeinerung. Der Artikel betont auch die Vielfalt der GMPE-Formulierungen für verschiedene Anwendungen und Regionen, die Rolle von GMPEs bei der Reduzierung von Unsicherheiten und ihre Integration in Erdbebenfrühwarnsysteme. Abschließend wird der tiefgreifende Einfluss von GMPEs auf die Erdbebentechnik und die Erdbebenrisikobewertung hervorgehoben und die Widerstandsfähigkeit und Zusammenarbeit in erdbebengefährdeten Regionen gefördert.

Keywords

Earthquake risk assessment, Seismic hazard analysis, Ground Motion Prediction Equations (GMPEs), Interdisciplinary collaboration, Seismic engineering

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green