<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Understanding human visual behavior within virtual reality environments is crucial to fully leverage their potential. While previous research has provided rich visual data from human observers, existing gaze datasets often suffer from the absence of multimodal stimuli. Moreover, no dataset has yet gathered eye gaze trajectories (i.e., scanpaths) for dynamic content with directional ambisonic sound, which is a critical aspect of sound perception by humans. To address this gap, we introduce D-SAV360, a dataset of 4,609 head and eye scanpaths for 360° videos with first-order ambisonics. This dataset enables a more comprehensive study of multimodal interaction on visual behavior in virtual reality environments. We analyze our collected scanpaths from a total of 87 participants viewing 85 different videos and show that various factors such as viewing mode, content type, and gender significantly impact eye movement statistics. We demonstrate the potential of D-SAV360 as a benchmarking resource for state-of-the-art attention prediction models and discuss its possible applications in further research. By providing a comprehensive dataset of eye movement data for dynamic, multimodal virtual environments, our work can facilitate future investigations of visual behavior and attention in virtual reality.
Eye Movements, 150, Computer Graphics, Virtual Reality, virtual reality, Humans, Attention, Fixation, Ocular, 004, 360º videos
Eye Movements, 150, Computer Graphics, Virtual Reality, virtual reality, Humans, Attention, Fixation, Ocular, 004, 360º videos
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |