Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2020
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2020
License: CC 0
Data sources: Datacite
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Development of Data Dictionary for neonatal intensive care unit: advancement towards a better critical care unit

Authors: Singh, Harpreet; Kaur, Ravneet; Saluja, Satish; Cho, Su; Kaur, Avneet; Pandey, Ashish; Gupta, Shubham; +5 Authors

Development of Data Dictionary for neonatal intensive care unit: advancement towards a better critical care unit

Abstract

Background: Critical care units (CCUs) with wide use of various monitoring devices generate massive data. To utilize the valuable information of these devices; data are collected and stored using systems like Clinical Information System (CIS), Laboratory Information Management System (LIMS), etc. These systems are proprietary in nature, allow limited access to their database and have vendor specific clinical implementation. In this study we focus on developing an open source web-based meta-data repository for CCU representing stay of patient with relevant details. Methods: After developing the web-based open source repository we analyzed prospective data from two sites for four months for data quality dimensions (completeness, timeliness, validity, accuracy and consistency), morbidity and clinical outcomes. We used a regression model to highlight the significance of practice variations linked with various quality indicators. Results: Data dictionary (DD) with 1447 fields (90.39% categorical and 9.6% text fields) is presented to cover clinical workflow of NICU. The overall quality of 1795 patient days data with respect to standard quality dimensions is 87%. The data exhibit 82% completeness, 97% accuracy, 91% timeliness and 94% validity in terms of representing CCU processes. The data scores only 67% in terms of consistency. Furthermore, quality indicator and practice variations are strongly correlated (p-value < 0.05). Results: Data dictionary (DD) with 1555 fields (89.6% categorical and 11.4% text fields) is presented to cover clinical workflow of a CCU. The overall quality of 1795 patient days data with respect to standard quality dimensions is 87%. The data exhibit 82% completeness, 97% accuracy, 91% timeliness and 94% validity in terms of representing CCU processes. The data scores only 67% in terms of consistency. Furthermore, quality indicators and practice variations are strongly correlated (p-value < 0.05). Conclusion: This study documents DD for standardized data collection in CCU. This provides robust data and insights for audit purposes and pathways for CCU to target practice improvements leading to specific quality improvements.

Supplementary_Data_Dictionary_Sheet_v1.0.xls The data dictionary Excel sheet is the main supporting document for the paper. DD_-_Neonatal_Data.csv The patient dataset is provided as a format for capturing data with respect to data dictionary.

Keywords

neonatal, standardization, Critical care, practice variations, network, data dictionary

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
    download downloads 12
  • 17
    views
    12
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
17
12
Related to Research communities