Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC 0
Data sources: ZENODO
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Dataset . 2023
License: CC 0
Data sources: ZENODO
DRYAD
Dataset . 2023
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Raw motif mapping bedfile data and model training set class probabilities

Authors: Davis, Phillip;

Raw motif mapping bedfile data and model training set class probabilities

Abstract

Leveraging prior viral genome sequencing data to make predictions on whether an unknown, emergent virus harbors a ‘phenotype-of-concern’ has been a long-sought goal of genomic epidemiology. A predictive phenotype model built from nucleotide-level information alone is challenging with respect to RNA viruses due to the ultra-high intra-sequence variance of their genomes, even within closely related clades. We developed a degenerate k-mer method to accommodate this high intra-sequence variation of RNA virus genomes for modeling frameworks. By leveraging a taxonomy-guided ‘group-shuffle-split’ cross validation paradigm on complete coronavirus assemblies from prior to October 2018, we trained multiple regularized logistic regression classifiers at the nucleotide k-mer level. We demonstrate the feasibility of this method by finding models accurately predicting withheld SARS-CoV-2 genome sequences as human pathogens and accurately predicting withheld Swine Acute Diarrhea Syndrome coronavirus (SADS-CoV) genome sequences as non-human pathogens. Feature selection using L1 regularization identified several degenerate nucleotide predictor motifs with high model coefficients for the human pathogen class that were present across widely disparate clades of coronaviruses. However, these motifs differed in which genes they were present in, what specific codons were used to encode them, and what the translated amino acid motif was. This emphasizes the importance of a phenetic view of emerging pathogenic RNA viruses, as opposed to the canonical phylogenetic interpretations most commonly used to track and manage viral zoonoses. Applying our model to more recent Orthocoronavirinae genomes deposited since October 2018 yields a novel contextual view of pathogen potential across bat-related, canine-related, porcine-related, and rodent-related coronaviruses and critical adaptations which may have contributed to the emergence of the pandemic SARS-CoV-2 virus. Finally, we discuss the next steps to achieve robust predictive ensembles and the utility of these models (and their associated predictor motifs) to novel biosurveillance protocols that substantially increase the ‘pound-for-pound’ information content of field-collected sequencing data and make a strong argument for the necessity of routine collection and sequencing of zoonotic viruses. 

The data was produced by hierarchically clustering K-mers to produce degenerate motifs that were then mapped back to the originating 2276 coronavirus genomes they were drawn from. Class probabilities we produced by regularized logistic regression models fit for a human pathogen phenotype label applied to those input genomes.

tar, gzip. Files can be read using any text reader, and processed with bedtools compatible software.

Keywords

FOS: Biological sciences, Bioinformatics and Computational Biology, data science, Machine-learning

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 1
    download downloads 4
  • 1
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
1
4
Related to Research communities