Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Shape coordinates and centroid size for adults and ontogenetic series analyzed in predictable complexity of evolutionary allometry

Authors: Zelditch, Miriam;

Shape coordinates and centroid size for adults and ontogenetic series analyzed in predictable complexity of evolutionary allometry

Abstract

Allometry has been a paradigm of constraints, including intrinsic constraints on the evolvability of allometry, as a source of developmental and genetic constraints on the evolution of form, and of functional constraints, maintaining functional equivalence as body size evolves. Yet, allometry may be the simplest case of varied constraints, and of morphological integration, even though allometry itself is not simple. Evolutionary allometry may be especially complex because it depends not only on the developmental origins of allometry and determinants of allometric variation but also on the evolutionary dynamics of size and shape. It should also depend on the ecological opportunity for size-dependent ecomorphological specialization. We predict that lineages that converge in those would exhibit similar evolutionary allometries but otherwise, evolutionary allometries would be heterogeneous. Countering this expectation are familiar craniofacial evolutionary allometries, often ascribed to developmental bias. To test both those hypotheses, we compare evolutionary allometries of mandibles across lineages of squirrels and evolutionary to growth allometries. As expected, lineages that converge on size-dependent specializations exhibit similar evolutionary allometries, but otherwise, their allometries are no more similar than expected by chance. Growth allometries of squirrels (and a cricetid rodent) slightly resemble the evolutionary allometry of one lineage, but growth allometries of species from other lineages are orthogonal to their own lineages’ evolutionary allometry. We would expect that craniofacial allometries that are not brain-driven would, like mandibular evolutionary allometries, be predictable only from size-dependent ecological specializations.

Coordinates of landmarks digitized on photographs, then Procrustes superimposed.

Any program that can open comma-delimited files.

Related Organizations
Keywords

FOS: Biological sciences, Sciuridae, shape

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 2
    download downloads 2
  • 2
    views
    2
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
2
2