Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Predicting the response to simultaneous selection: genetic architecture and physiological constraints

Authors: Davidowitz, Goggy; Nijhout, H. Frederik; Roff, Derek A.;

Data from: Predicting the response to simultaneous selection: genetic architecture and physiological constraints

Abstract

A great deal is known about the evolutionary significance of body size and development time. They are determined by the non-linear interaction of three physiological traits: two hormonal events and growth rate. In this study we investigate how the genetic architecture of the underlying three physiological traits affects the simultaneous response to selection on the two life history traits in the hawk moth Manduca sexta. The genetic architecture suggests that when the two life history traits are both selected in the same direction (to increase or decrease) the response to selection is primarily determined by the hormonal mechanism. When the life history traits are selected in opposite directions (one to increase and one to decrease) the response to selection is primarily determined by factors that affect the growth rate. To determine how the physiological traits affect the response to selection of the life history traits, we simulated the predicted response to ten generations of selection. 83% of our predictions were supported by the simulation. The main components of this physiological framework also exist in unicellular organisms, vertebrates and plants and can thus provide a robust framework for understanding how underlying physiology can determine the simultaneous evolution of life history traits.

Data Davidowitz Evolution 2012data of all offspring and parents analyzed. see ReadMe file for key.

Keywords

Manduca sexta, physiological antagonism, critical weight, interval to cessation of growth, growth rate, Sphingidae, physiological synergism

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 19
    download downloads 1
  • 19
    views
    1
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
3
Average
Average
Average
19
1