Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Data from: Field measurements give biased estimates of functional response parameters, but help explain foraging distributions

Authors: Duijns, Sjoerd; Knot, Ineke E.; Piersma, Theunis; van Gils, Jan A.;

Data from: Field measurements give biased estimates of functional response parameters, but help explain foraging distributions

Abstract

1. Mechanistic insights and predictive understanding of the spatial distributions of foragers are typically derived by fitting either field measurements on intake rates and food abundance, or observations from controlled experiments, to functional response models. It has remained unclear, however, whether and why one approach should be favoured above the other, as direct comparative studies are rare. 2. The field measurements required to parameterize either single or multi-species functional response models are relatively easy to obtain, except at sites with low food densities and at places with high food densities, as the former will be avoided and the second will be rare. Also, in foragers facing a digestive bottleneck, intake rates (calculated over total time) will be constant over a wide range of food densities. In addition, interference effects may further depress intake rates. All of this hinders the appropriate estimation of parameters such as the ‘instantaneous area of discovery’ and the handling time, using a type II functional response model also known as ‘Holling's disc equation’. 3. Here we compare field- and controlled experimental measurements of intake rate as a function of food abundance in female bar-tailed godwits Limosa lapponica feeding on lugworms Arenicola marina. 4. We show that a fit of the type II functional response model to field measurements predicts lower intake rates (about 2.5 times), longer handling times (about 4 times) and lower ‘instantaneous areas of discovery’ (about 30 to 70 times), compared with measurements from controlled experimental conditions. 5. In agreement with the assumptions of Holling's disc equation, under controlled experimental settings both the instantaneous area of discovery and handling time remained constant with an increase in food density. The field data, however, would lead us to conclude that although handling time remains constant, the instantaneous area of discovery decreased with increasing prey densities. This will result into highly underestimated sensory capacities when using field data. 6. Our results demonstrate that the elucidation of the fundamental mechanisms behind prey detection and prey processing capacities of a species necessitates measurements of functional response functions under the whole range of prey densities on solitary feeding individuals, which is only possible under controlled conditions. Field measurements yield ‘consistency tests’ of the distributional patterns in a specific ecological context.

Field_data_IThis file provides the field data of observed female bar-tailed godwits foraging on lugworms. Data includes prey size, handling time, energy (g AFDM), total foraging time, time spent vigilance, preening time, plot nr, searching time (Ts), intake rate per second and prey density.Field_data_IISimilar file as Field_data_I, but now only for individual foraging birds.handlingThe data file from the experimental set up.Ivlev_densityData file containing the Ivlev index, per grouped food densitylong_term_intakeFile containing detailed (per sec) cummulative intake from 3 individual birdsSearch_timeDatafile containing search time (Ts), with a similar set up as the handling data file

Keywords

energetics, prey detection, Limosa lapponica, Holling’s disc equation, Digestive constraint, interference, distribution, Foraging, Arenicola marina

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 11
    download downloads 8
  • 11
    views
    8
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
11
8
Related to Research communities