
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Understanding the effect of body size on flight costs is critical for development of models of aerodynamics and animal energetics. Prior scaling studies that have shown that flight costs scale hypometrically have focused primarily on larger (> 100 mg) insects and birds, but most flying species are smaller. We studied the flight physiology of thirteen stingless bee species over a large range of body sizes (1-115 mg). Metabolic rate during hovering scaled hypermetrically (scaling slope = 2.11). Larger bees had warm thoraxes while small bees were nearly ecothermic; however, even controlling for body temperature variation, flight metabolic rate scaled hypermetrically across this clade. Despite having a lower mass-specific metabolic rate during flight, smaller bees could carry the same proportional load. Wingbeat frequency did not vary with body size, in contrast to most studies that find wingbeat frequency increases as body size decreases. Smaller stingless bees have greater relative wing surface area which may help them reduce the energy requirements needed to fly. Further, we hypothesize that the relatively larger heads of smaller species may change their body pitch in flight. Synthesizing across all flying insects, we demonstrate that the scaling of flight metabolic rate changes from hypermetric to hypometric at approximately 58 mg body mass with hypermetic scaling below (slope=1.2) and hypometric scaling (slope=0.67) above 58 mg in body mass. The reduced cost of flight likely provides selective advantages for the evolution of small body size in insects. The biphasic scaling of flight metabolic rates and wingbeat frequencies in insects supports the hypothesis that the scaling of metabolic rate is closely related to the power requirements of locomotion and cycle frequencies.
Flight metaboic rates were measured with flow-through respirometry. Full methods are available in the associated manuscript.
Scaptotrigona panamensis, Trigonisca buoyssoni, stingless bee, Lestrimelitta danuncia, Trigonisca atomaria, flight metabolic rate, Plebeia franki, Frieseomelitta nigra, Melipona triplaridis, wing beat frequency, wing morphology, FOS: Biological sciences, Melipona panamica, Plebeia frontalis, Trigona fulviventris, Tetragonisca angustula, Body temperature, Trigona muzoensis, body temperature, Scaptotrigona luteipinnis
Scaptotrigona panamensis, Trigonisca buoyssoni, stingless bee, Lestrimelitta danuncia, Trigonisca atomaria, flight metabolic rate, Plebeia franki, Frieseomelitta nigra, Melipona triplaridis, wing beat frequency, wing morphology, FOS: Biological sciences, Melipona panamica, Plebeia frontalis, Trigona fulviventris, Tetragonisca angustula, Body temperature, Trigona muzoensis, body temperature, Scaptotrigona luteipinnis
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
downloads | 1 |