Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

Data from: Human face-off: a new method for mapping evolutionary rates on three-dimensional digital models

Authors: Castiglione, Silvia; Melchionna, Marina; Profico, Antonio; Sansalone, Gabriele; Modafferi, Maria; Mondanaro, Alessandro; Wroe, Stephen; +2 Authors

Data from: Human face-off: a new method for mapping evolutionary rates on three-dimensional digital models

Abstract

Modern phylogenetic comparative methods allow estimating evolutionary rates of phenotypic change, how these rates differ across clades, and assessing whether the rate remained constant over time. Unfortunately, currently available phylogenetic comparative tools express the rate in terms of a scalar dimension, hence they do not allow us to determine rate variations among different parts of a single, complex phenotype, or charting of realized rate variation directly onto the phenotype. Herein, we present a new method which allows the mapping of evolutionary rate variation directly on three-dimensional phenotypes, informing on the direction and magnitude of trait change automatically. This new method, implemented by the function rate.map embedded in the R package ‘RRphylo’, is based on phylogenetic ridge regression rate estimates. Since the latter represent ridge regression slopes, they possess sign and magnitude. In ‘RRphylo’, different rates are calculated for different districts of the phenotype, which can then be visualized directly onto the phenotype itself. We present the application of rate.map to the evolution of facial skeleton in Hominoidea (the clade including living and fossil apes), the primate clade inclusive of Homo and the greater apes. We found that the highly derived, unique shape of the face in modern humans evolved through rapid phenotypic changes affecting the nasal bones, the brow ridge and the maxillary region. The canine fossa, a facial feature unique to Homo sapiens, did not belong to a region of rapid phenotypic change, and could be seen as the by-product of midface evolution as suggested by previous studies.

Keywords

evolutionary rates, RRphylo, Hominoidea, FOS: Earth and related environmental sciences, digital models, rate.map

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 17
    download downloads 4
  • 17
    views
    4
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
0
Average
Average
Average
17
4
Related to Research communities