
The optimization of geometries for aerodynamic design often relies on a large number of expensive simulations to evaluate and iteratively improve the geometries. It is possible to reduce the number of simulations by providing a starting geometry that has properties close to the desired requirements, often in terms of lift and drag, aerodynamic moments and surface areas. We show that generative models have the potential to provide such starting geometries by generalizing geometries over a large dataset of simulations. In particular, we leverage diffusion probabilistic models trained on XFOIL simulations to synthesize two-dimensional airfoil geometries conditioned on given aerodynamic features and constraints. The airfoils are parameterized with Bernstein polynomials, ensuring smoothness of the generated designs. We show that the models are able to generate diverse candidate designs for identical requirements and constraints, effectively exploring the design space to provide multiple starting points to optimization procedures. However, the quality of the candidate designs depends on the distribution of the simulated designs in the dataset. Importantly, the geometries in this dataset must satisfy other requirements and constraints that are not used in conditioning of the diffusion model, to ensure that the generated geometries are physical.
10 pages, 11 figures, DLRK 2024
Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computational Engineering, Finance, and Science, Machine Learning (cs.LG)
Computational Engineering, Finance, and Science (cs.CE), FOS: Computer and information sciences, Computer Science - Machine Learning, Computer Science - Computational Engineering, Finance, and Science, Machine Learning (cs.LG)
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
