Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Astronomy and Astrop...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Astronomy and Astrophysics
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Research.fi
Article . 2025 . Peer-reviewed
Data sources: Research.fi
https://dx.doi.org/10.48550/ar...
Article . 2024
License: CC BY
Data sources: Datacite
Astronomy and Astrophysics
Article . 2025 . Peer-reviewed
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Sample of hydrogen-rich superluminous supernovae from the Zwicky Transient Facility

Authors: P. J. Pessi; R. Lunnan; J. Sollerman; S. Schulze; A. Gkini; A. Gangopadhyay; L. Yan; +22 Authors

Sample of hydrogen-rich superluminous supernovae from the Zwicky Transient Facility

Abstract

Context. Hydrogen-rich superluminous supernovae (SLSNe II) are rare. The exact mechanism producing their extreme light curve peaks is not understood. Analysis of single events and small samples suggest that circumstellar material (CSM) interaction is the main mechanism responsible for the observed features. However, other mechanisms cannot be discarded. Large sample analysis can provide clarification. Aims. We aim to characterize the light curves of a sample of 107 SLSNe II to provide valuable information that can be used to validate theoretical models. Methods. We analyzed the gri light curves of SLSNe II obtained through ZTF. We studied the peak absolute magnitudes and characteristic timescales. When possible, we computed the g − r colors and pseudo-bolometric light curves, and estimated lower limits for their total radiated energy. We also studied the luminosity distribution of our sample and estimated the fraction that would be observable by the LSST. Finally, we compared our sample to other H-rich SNe and to H-poor SLSNe I. Results. SLSNe II are heterogeneous. Their median peak absolute magnitude is ∼ − 20.3 mag in optical bands. Their rise can take from ∼two weeks to over three months, and their decline times range from ∼twenty days to over a year. We found no significant correlations between peak magnitude and timescales. SLSNe II tend to show fainter peaks, longer declines, and redder colors than SLSNe I. Conclusions. We present the largest sample of SLSN II light curves to date, comprising 107 events. Their diversity could be explained by different CSM morphologies, although theoretical analysis is needed to explore alternative scenarios. Other luminous transients, such as active galactic nuclei, tidal disruption events or SNe Ia-CSM, can easily become contaminants. Thus, good multiwavelength light curve coverage becomes paramount. LSST could miss ∼30% of the ZTF events in its gri band footprint.

Keywords

High Energy Astrophysical Phenomena (astro-ph.HE), FOS: Physical sciences, Astrophysics - High Energy Astrophysical Phenomena

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Average
Average
Average
Green
hybrid