<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Today's generative neural networks allow the creation of high-quality synthetic speech at scale. While we welcome the creative use of this new technology, we must also recognize the risks. As synthetic speech is abused for monetary and identity theft, we require a broad set of deepfake identification tools. Furthermore, previous work reported a limited ability of deep classifiers to generalize to unseen audio generators. We study the frequency domain fingerprints of current audio generators. Building on top of the discovered frequency footprints, we train excellent lightweight detectors that generalize. We report improved results on the WaveFake dataset and an extended version. To account for the rapid progress in the field, we extend the WaveFake dataset by additionally considering samples drawn from the novel Avocodo and BigVGAN networks. For illustration purposes, the supplementary material contains audio samples of generator artifacts.
Code available at: https://github.com/gan-police/audiodeepfake-detection
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Machine Learning (cs.LG)
FOS: Computer and information sciences, Computer Science - Machine Learning, Sound (cs.SD), Audio and Speech Processing (eess.AS), FOS: Electrical engineering, electronic engineering, information engineering, Computer Science - Sound, Electrical Engineering and Systems Science - Audio and Speech Processing, Machine Learning (cs.LG)
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |