<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The advent of noisy-intermediate scale quantum computers has introduced the exciting possibility of achieving quantum speedups in machine learning tasks. These devices, however, are composed of a small number of qubits, and can faithfully run only short circuits. This puts many proposed approaches for quantum machine learning beyond currently available devices. We address the problem of efficiently compressing and loading classical data for use on a quantum computer. Our proposed methods allow both the required number of qubits and depth of the quantum circuit to be tuned. We achieve this by using a correspondence between matrix-product states and quantum circuits, and further propose a hardware-efficient quantum circuit approach, which we benchmark on the Fashion-MNIST dataset. Finally, we demonstrate that a quantum circuit based classifier can achieve competitive accuracy with current tensor learning methods using only 11 qubits.
Quantum Physics, Physics, QC1-999, General Physics and Astronomy, FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, 530, 620, Quantum Physics (quant-ph), ddc: ddc:
Quantum Physics, Physics, QC1-999, General Physics and Astronomy, FOS: Physical sciences, Disordered Systems and Neural Networks (cond-mat.dis-nn), Condensed Matter - Disordered Systems and Neural Networks, 530, 620, Quantum Physics (quant-ph), ddc: ddc:
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 27 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |