<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
As a part of natural language processing (NLP), machine translation focuses on automated techniques to produce target language text from the source language text. In this study, we combined two approaches: the rule-based MT approach and the statistical MT approach. Sentence reordering, Language model, Translation models, and decoding comprise the system. POS tagging was used to reorder the sentence more comparably, the IRSTLM tool was used to create language models for English, and the Wolaytta, Giza++ tool was used for translation. To ensure mutual translation, two language models have been developed. Four phases of experiments are carried out on the collected dataset. Phases of experimentation include preprocessing on the parallel corpus, language modelling, training the translation model, and tuning the translation system. For both side translations, the BLEU score assessed the translation accuracy from Wolaytta to English as 46.31 % and from English to Wolaytta as 56.56%.
Machine Translation, English-Wolaytta Machine Translation, bidirectional Machine Translation, Hybrid Approach, Statistical Approach, Rule-Based Approach, Natural Language Processing, Parallel Corpus
Machine Translation, English-Wolaytta Machine Translation, bidirectional Machine Translation, Hybrid Approach, Statistical Approach, Rule-Based Approach, Natural Language Processing, Parallel Corpus
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |