Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Leveraging Cryptographic Hash Functions for Credit Card Fraud Detection

Authors: Govind Prasad Buddha;

Leveraging Cryptographic Hash Functions for Credit Card Fraud Detection

Abstract

Credit card fraud remains a significant challenge in the financial industry, posing substantial financial losses to both consumers and businesses. Traditional fraud detection methods often rely on rule-based approaches and statistical models, which may struggle to keep pace with evolving fraud tactics and sophisticated cyber threats. In this paper, we propose a novel approach to credit card fraud detection leveraging cryptographic hash functions. Cryptographic hash functions offer robust security guarantees, including collision resistance and preimage resistance, making them well-suited for ensuring the integrity and authenticity of transaction data. Our proposed system employs cryptographic hash functions, such as SHA-256, to generate unique hash values for credit card transactions. These hash values serve as digital fingerprints of the transaction data, enabling secure verification and auditing of transactions on the blockchain. We conducted experiments using a dataset of 100,000 credit card transactions, evaluating the performance of our system in terms of accuracy, precision, recall, and F1-score. The results demonstrate the effectiveness of our approach in accurately identifying fraudulent transactions while minimizing false positives. Furthermore, we discuss the implications of our findings and explore future research directions, including the integration of advanced cryptographic techniques and blockchain technology to enhance the security and privacy of credit card transactions. Overall, our study underscores the importance of cryptographic hash functions in building robust and secure fraud detection systems capable of combating emerging fraud threats in the digital era.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold