Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
SSRN Electronic Journal
Article . 2024 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Visual Fall Detection Analysis Through Computer Vision and Deep Learning – Technology Proposition

Authors: null Dr. C Kiranmai; null B Srivalli; null CH Komali; null G Apurva; B Sneha Yesshaswi;

Visual Fall Detection Analysis Through Computer Vision and Deep Learning – Technology Proposition

Abstract

Advances in modern medicine has increased humans’ life span. Orderly adults face mobility problems while aging. They feel less fit to continue any activity for short intervals too. This is due to declining fitness levels or muscle strength, diminished dexterity, and loss of balance. These symptoms lead to the fall of the individual and sometimes fatal too, if immediately not attended to. It’s an alarming issue for people staying alone. They may pose significant health risks and need immediate assistance. Fall detection technologies are majorly categorised as wearable sensors and ambient sensors. Fall detection wearable devices like pendant necklaces, watches and wristband devices, and clip-on medical alerts use accelerometers to detect rapid downward movements that can indicate a fall. They often also include manual alert buttons, for an increased accuracy. This requires technology comfort and awareness for usage. Ambient home sensors use video cameras to monitor the user’s movement and detect falls. When the fall is transmitted to a monitoring center, a representative typically will call the user to check on them before notifying contacts or calling for emergency services, but this can depend on the user’s preferences and risk factors. In this paper we propose a technology, using security cameras to record videos and create a video-based fall detection system. The system uses computer vision and deep learning algorithms to accurately recognize fall-related movements and distinguish them from regular activities. This system can be integrated to prompt alerts to emergency contacts, thus assisting in providing immediate aid to individuals who have experienced a fall. For higher accuracy, multiple-angle videos and multi-person tracking is integrated in this system to estimate the intensity of the fall for immediate attention. Thus, this fall detection system can contribute to the safety, well-being and independence of individuals at risk of falling.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
gold