Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ International Journa...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2020
License: CC BY
Data sources: ZENODO
International Journal of Management and Humanities
Article . 2020 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assimilation of Principal Component Analysis and Wavelet with Kernel Support Vector Regression for Medium-Term Financial Time Series Forecasting

Authors: Alhassan, Baba Gimba; Yusof, Fadhilah; Norrulashikin, Siti Mariam;

Assimilation of Principal Component Analysis and Wavelet with Kernel Support Vector Regression for Medium-Term Financial Time Series Forecasting

Abstract

Entities and institutional financiers have gained a lot of growth from financial time series forecasting in recent times. But the major challenges of financial time series data are the high noise and complexity of its nature. Researchers in recent times have successfully engaged the application of support vector regression (SVR) to conquer this challenge. In this study principal component analysis (PCA) is applied to extract the low dimensionality and efficient feature information, while wavelet is used to pre-process the extracted features in other to nu1llify the influence of the noise in the features with a KSVR based forecasting model. The analysis is carried out based on the quarterly tax revenue data of 39 years from the first quarter of 1981 to the last quarter of 2016. The forecasting is made for ten quarters ahead. The initial empirical result shows that the multicollinearity has been reduced to zero (0), and the analytic result reveals that the proposed model PCA-W-KSVR outperforms KSVR, PCA-KSVR, and W-KSVR in terms of MAE, MAPE, MSE and RMSE.

Country
Malaysia
Keywords

330, Principal Component Analysis, Dimensionality, Financial time series, Forecasting, Tax revenue, Q Science (General)

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 31
    download downloads 10
  • 31
    views
    10
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
4
Top 10%
Average
Average
31
10
Green
bronze