
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The analysis of sentiment towards COVID-19 plays a crucial role in understanding public opinion. This research paper proposes sentiment analysis using K-means and DBSCAN clustering algorithms on the dataset of tweets related to COVID-19. Pre-processing and extraction of features is carried out using Term Frequency-Inverse Document Frequency (Tf-idf) to capture the weight of words in the dataset. K-means clustering is explored to group similar sentiments together, enabling the identification of sentiment clusters related to COVID-19. The DBSCAN algorithm is then employed to identify outliers and noise in the sentiment clusters. The evaluation metrics considered were accuracy, recall, F1-score, and precision. It was observed that DBSCAN was more effective in identifying underlying patterns in the data more accurately.
social media, Public Opinion, COVID-19, K-Means, DBSCAN
social media, Public Opinion, COVID-19, K-Means, DBSCAN
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
