Powered by OpenAIRE graph
Found an issue? Give us feedback
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Ensemble Learning for Heart Disease Diagnosis: AVoting Classifier Approach

Authors: Yogesh S; Paneer Thanu Swaroop C; Ruba Soundar K;

Ensemble Learning for Heart Disease Diagnosis: AVoting Classifier Approach

Abstract

Cardiovascular disease remains a serious public health problem internationally, responsible for a considerable number of fatalities. Early and correct detection of cardiovascular illness is crucial for optimal care and control of the condition. In this paper, we present an ensemble learning technique that includes voting classifiers to increase the reliability of cardiovascular disease diagnosis. We obtained a set of data from five cardiology databases, which included the Cleveland, Hungary, Switzerland, Long Beach VA and Statlog (Heart) datasets, which supplied us with a total of 1189 entries. We employed a feature engineering approach to extract relevant features from the dataset, enabling us to acquire vital information to enhance our model's performance. We trained and evaluated several machine learning algorithms, such as Random Forests, MLP, K-Nearest Neighbors, Extra Trees, XGBoost, Support Vector Machines, AdaBoost, Decision Trees, Linear Discriminant Analysis, and Gradient Boosting, and then incorporated these models using voting classifiers to produce more reliable and accurate models. Our findings reveal that the proposed ensemble learning process outperforms standalone models and conventional ensemble approaches, obtaining an accuracy rate of 91.4%. Our technique is likely to benefit clinicians in the early diagnosis of heart problems and improve patient outcomes. This work has major significance for the area of cardiology, indicating the possibility for machine learning approaches to boost both the reliability and accuracy of heart disease identification. The recommended ensemble learning technique may be adopted in hospitals to enhance patient care and eventually lessen the worldwide impact of cardiovascular disease. Further study is required to investigate the uses of predictive modeling in cardiology and other medical domains.

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
Related to Research communities
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!