
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Concrete is an essential material in all constructions throughout the world. It has lot of uses in our daily routine life. Every material has to deteriorate and damage due to many factors in the same way the concrete also deteriorates. The carbonation process is identified as a main reason for the corrosion in reinforcement concrete structure. The mechanism of carbonation which includes the entrance of carbon dioxide (CO2) into the solid permeable framework of concrete to shape a situation by decreasing the pH around the fortification and inception of the corrosion procedure. This paper investigates the impact of the carbonation on the characteristics of the concrete like strength in compression, split tensile strength, flexural strength, shear strength and durability. The addition of supplementary cementitious materials like fly ash, GGBFS, rice husk ash, metakaolin is known to enhance the strength and durability of concrete in construction. In this paper an accelerated carbonation test has been done to assess concrete carbonation on specimens made with cement and with the partial replacement of cement by fly ash GGBFS, rice husk ash, metakaolin. An accelerated carbonation chamber has been constructed for creating an environment of carbonation process to occur and also the passage of carbon dioxide gas is kept constant for all the cubes, cylinders and beams. Concrete cubes, cylinders and beams are prepared for M30 grade subjected to different percentages of carbonation.
concrete, accelerated carbonation, durability, cementitious materials
concrete, accelerated carbonation, durability, cementitious materials
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 3 | |
downloads | 3 |