Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Clinical ...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Clinical Medicine
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
versions View all 2 versions
addClaim

Multimodal Fusion of Chest X-Rays and Blood Biomarkers for Automated Silicosis Staging

Authors: Blanca Priego-Torres; Iris Sopo-Lambea; Ebrahim Khalili; Ana Martín-Carrillo; Antonio Campos-Caro; Antonio León-Jiménez; Daniel Sanchez-Morillo;

Multimodal Fusion of Chest X-Rays and Blood Biomarkers for Automated Silicosis Staging

Abstract

Background/Objectives: Silicosis, a fibrotic lung disease, is re-emerging globally, driven by an aggressive form linked to engineered stone processing that rapidly progresses to progressive massive fibrosis (PMF). The standard diagnostic approach, chest X-ray (CXR), is subject to considerable inter-observer variability, making the distinction between simple silicosis (SS) and PMF particularly challenging. The purpose of this study was to develop and validate an automated multimodal framework for silicosis staging by integrating artificial intelligence (AI), CXR images, and routine blood biomarkers. Methods: We developed three fusion architectures, early, late, and hybrid, connecting blood biomarker analysis with CXR analysis. Deep learning and conventional (shallow) machine learning models were combined. The models were trained and validated on a cohort of 94 patients with engineered stone silicosis, providing 341 paired CXR and biomarker samples. A patient-aware 5-fold cross-validation was used to ensure the model’s generalizability and prevent patient data leakage between folds. Results: The hybrid and late fusion models achieved the best performance for disease staging, yielding an area under the receiver operating characteristic (ROC) curve (AUC) of 0.85. This multimodal approach outperformed both the unimodal CXR-based model (AUC = 0.83) and the biomarker-based model (AUC = 0.70). Conclusions: This study reveals that AI-based techniques that utilize a multimodal fusion approach have the potential to outperform single-modality methods have the potential to serve as an objective decision support tool for clinicians, leading to more consistent staging and improved patient management.

Keywords

Article

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average