Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Firearrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fire
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Fire
Article . 2025
Data sources: DOAJ
ZENODO
Article . 2025
License: CC BY
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Thermomechanical Treatment of SRF for Enhanced Fuel Properties

Authors: Prokeš, Rostislav; Diviš, Jan; Ryšavý, Jiří; Jezerská, Lucie; Lukasz, Niedzwiecki; Patino, David; Moscicki, Krzysztof; +4 Authors

Thermomechanical Treatment of SRF for Enhanced Fuel Properties

Abstract

Solid recovered fuel (SRF) is highly suited for thermal treatment, but its low bulk density and other physical properties limit the number of compatible energy systems that can effectively process it. This study presents the findings on SRF energy utilisation, focusing on mechanical treatment and a novel approach to its small-scale co-combustion with certified softwood (SW) pellets and catalytic flue gas control. In this study, the processes of certified SRF feedstock characterisation and mechanical treatment were thoroughly examined. Unique SRF pellets of proper mechanical properties were experimentally prepared for real-scale experiments. Mechanical and chemical properties, such as mechanical resilience, toughness, moisture and heating value, were examined and compared with standard SW A1 class pellets. The prepared SRF pellets possessed an energy density of 30.5 MJ∙kg−1, meeting the strict requirements from multiple perspectives. The influence of pelletisation temperature on pellet quality was investigated. It was found that increased resilience and a water content of 1.59% were achieved at a process temperature equal to 75 °C. Moreover, the moisture resilience was found to be significantly better (0.5 vs. 14.23%) compared with commercial SW pellets, while the hardness and durability values were reasonably similar: 40.7 vs. 45.2 kg and 98.74 vs. 98.99%, respectively. This study demonstrates that SRF pellets, with their improved mechanical and energy properties, are a viable alternative fuel, from a technical standpoint, which can be fully utilised in existing combustion units.

Keywords

pelletisation, Physics, QC1-999, alternative fuel, waste management, SRF, energy density, material characterisation

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
gold
Related to Research communities