Downloads provided by UsageCounts
doi: 10.3390/cryst9090446
Based on the previous identification of metastable polymorphs in crystalline triphenylbismuth by nuclear quadrupole resonance spectroscopy (NQRS), the potential formation of similar phases was studied in Tris(2-Methoxyphenyl)Bismuthine. To this end, commercial samples with known NQRS properties were molten and re-crystallized at different speeds (shock freezing in different coolants versus slow cooling inside of a heater). In all recrystallization products we have identified a new crystal phase which has not been observed after synthesis from a solution. The new crystallographic structure has been confirmed by X-ray diffraction (XRD). The newly isolated polymorph crystallizes in the monoclinic space group P2(1)/c with only one molecule in the asymmetric unit and consequently only one 5/2-7/2 transition is observed at 88.75 MHz at 310 K. In contrast, the two transitions at 89.38 and 89.29 MHz for the well-known trigonal polymorph originate from two crystallographically distinct molecules of Tris(2-methoxy-Phenyl)Bismuthine in the asymmetric unit. Additional relaxometric NQRS shows distinctly different T2 relaxation times for the new polymorph when compared to the original samples. Additional phase transitions could not be observed during temperature sweeps between 153 K and 323 K.
Tris(2-Methoxyphenyl)Bismuthine, melting, Crystallography, x-ray diffractometry, QD901-999, recrystallization, nuclear quadrupole resonance spectroscopy, polymorphs
Tris(2-Methoxyphenyl)Bismuthine, melting, Crystallography, x-ray diffractometry, QD901-999, recrystallization, nuclear quadrupole resonance spectroscopy, polymorphs
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 4 | |
| downloads | 2 |

Views provided by UsageCounts
Downloads provided by UsageCounts