Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Frontiers in Medicin...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Medicine
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2025
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Frontiers in Medicine
Article . 2025
Data sources: DOAJ
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Mechanical stimulation prevents impairment of axon growth and overcompensates microtubule destabilization in cellular models of Alzheimer’s disease and related Tau pathologies

Authors: Alice Alessandra Galeotti; Lorenzo Santucci; Jennifer Klimek; Jennifer Klimek; Mohamed Aghyad Al Kabbani; Mohamed Aghyad Al Kabbani; Hans Zempel; +2 Authors

Mechanical stimulation prevents impairment of axon growth and overcompensates microtubule destabilization in cellular models of Alzheimer’s disease and related Tau pathologies

Abstract

Alzheimer’s disease (AD) and related tauopathies such as frontotemporal dementia (FTD) or traumatic brain injury (TBI) are neurodegenerative disorders characterized by progressive loss of memory and cognitive function. The main histopathological features of AD are amyloid-β plaques and Tau neurofibrillary tangles, suggested to interfere with neuronal function and to cause microtubule (MT) destabilization. We recently demonstrated that low mechanical forces promote MT stabilization, which in turn promotes axon growth and neuronal maturation. As neurites may become dystrophic due to MT destabilization in tauopathies, we hypothesized that force-induced MT stabilization is neuroprotective in cell models subjected to tauopathy-like stress. We set up two different pathological cellular models subjecting them to AD-related Tau pathology stressors. We found that exposure of mouse primary neurons to Tau oligomers and neurons derived from human induced pluripotent stem cell (hiPSC) to amyloid-β oligomers resulted in neurotoxic effects such as axonal shortening, reduction in dendrite number, and MT destabilization. Mechanical stimulation (i) prevented delays in axonal extensions and dendrite sprouting, restoring axon outgrowth to physiological levels, and (ii) compensated for axonal MT destabilization by increasing MT stability to levels higher than in control conditions. In summary, we here demonstrate that low mechanical force can be used as a neuroprotective extrinsic factor to prevent MT destabilization and axon degeneration caused by AD-like or tauopathy-like stressors.

Country
Italy
Keywords

Medicine (General), Tau pathology, R5-920, microtubule stabilization, Medicine, nano-pulling, mechanical stimulation, Alzheimer’s disease

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
gold
Funded by