Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Journal of Dairy Sci...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Dairy Science
Article . 2025 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Dairy Science
Article . 2025
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Journal of Dairy Science
Article . 2025 . Peer-reviewed
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
http://dx.doi.org/10.3168/jds....
Article
License: Elsevier TDM
Data sources: Sygma
versions View all 5 versions
addClaim

Bovine fecal extracellular vesicles: A novel noninvasive tool for understanding gut physiology and pathophysiology in calves

Authors: Premathilaka, Chanaka; Kodithuwakku, Suranga; Midekessa, Getnet; Godakumara, Kasun; Ul Ain Reshi, Qurat; Andronowska, Aneta; Orro, Toomas; +1 Authors

Bovine fecal extracellular vesicles: A novel noninvasive tool for understanding gut physiology and pathophysiology in calves

Abstract

Dairy calf gut health is linked with development and future production. Fecal extracellular vesicles (fEV) have emerged as a noninvasive tool in elucidating gut physiology and pathophysiology. Because feces is a complex matrix, the enrichment of extracellular vesicles (EV) from ruminant or preruminant feces is difficult. Nevertheless, if enriched, they have great potential as a gut health diagnostic and monitoring tool in dairy calves. Therefore, this study aimed to devise a protocol to enrich and characterize fEV from preweaning calves. We developed an fEV enrichment method by combination of differential centrifugation and double size exclusion chromatography and then characterized the fEV from the healthy calves. The study also assessed sample storage conditions, and the results indicated that storing preprocessed fecal samples at -80°C effectively preserves EV without introducing additional nanoparticles. Finally, fEV from 10-d-old healthy and Cryptosporidium spp.-positive calves were enriched, and a comparative analysis of fEV characteristics between the 2 groups was performed. Characterization results on EV specific protein biomarkers, size profile, total protein content, zeta potential, and morphology clearly established the enrichment of fEV with the developed protocol. The fEV analysis for calves positive and negative for Cryptosporidium spp. revealed a significant decrease in average nanoparticle size and zeta potential values in Cryptosporidium spp.-infected calves. Furthermore, the enriched fEV carried protein and nucleic acid cargo which could be further analyzed for other biomarkers to predict the gut physiology and pathophysiology of calves. In conclusion, our study has successfully optimized a protocol to enrich high purity grade EV from calf feces and displayed potential diagnostic application as a noninvasive tool.

Keywords

disease diagnosis and monitoring, calf feces, Dairying, Feces, Extracellular Vesicles, SF221-250, Animals, Cryptosporidium, Cryptosporidiosis, Cattle, extracellular vesicles, SF250.5-275, Dairy processing. Dairy products

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    4
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
4
Top 10%
Average
Average
gold
Funded by