Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ DLR publication serv...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
DLR publication server
Conference object . 2021
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.2514/6.2021...
Article . 2021 . Peer-reviewed
Data sources: Crossref
versions View all 4 versions
addClaim

Effectiveness of Surrogate-Based Optimization Algorithms for System Architecture Optimization

Authors: Bussemaker, Jasper; Bartoli, Nathalie; Lefebvre, Thierry; Ciampa, Pier Davide; Nagel, Björn;

Effectiveness of Surrogate-Based Optimization Algorithms for System Architecture Optimization

Abstract

The design of complex system architectures brings with it a number of challenging issues, among others large combinatorial design spaces. Optimization can be applied to explore the design space, however gradient-based optimization algorithms cannot be applied due to the mixed-discrete nature of the design variables. It is investigated how effective surrogate-based optimization algorithms are for solving the black-box, hierarchical, mixed-discrete, multi-objective system architecture optimization problems. Performance is compared to the NSGA-II multi-objective evolutionary algorithm. An analytical benchmark problem that exhibits most important characteristics of architecture optimization is defined. First, an investigation into algorithm effectiveness is performed by measuring how accurately a known Pareto-front can be approximated for a fixed number of function evaluations. Then, algorithm efficiency is investigated by applying various multi-objective convergence criteria to the algorithms and establishing the possible trade-off between result quality and function evaluations needed. Finally, the impact of hidden constraints on algorithm performance is investigated. The code used for this paper has been published.

Countries
France, Germany
Keywords

Search Algorithm, Optimization Algorithm, [SPI] Engineering Sciences [physics], system architecting, surrogate-based optimization, [MATH] Mathematics [math], [PHYS] Physics [physics], Machine Learning, Artificial Intelligence, Information, and Communication, kriging, Genetic Algorithm, Computer Programming and Language, Data Science, Computing, Evolutionary Algorithm, rbf, mdo, Supercomputers, Avionics Computers, Computing and Informatics, Algorithms and Data Structures, optimization

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    10
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 7
    download downloads 12
  • 7
    views
    12
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
10
Top 10%
Average
Top 10%
7
12
Green