Views provided by UsageCounts
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>Two steel substrate test panels were developed to represent common plate thicknesses found on naval vessels and scanned using the Babcock developed ultrasonic technique. One sample comprised of a series of slotted surface breaking flaws of varying widths and through thicknesses to represent fracturing/cracking. The inspection method detected simulated cracking to a depth of 2mm and 0.5mm in width. The second sample included numerous loss of wall thickness areas of varying diameters and through thicknesses, with the smallest detectable loss of wall thickness being 0.1mm at a 15mm diameter. After proving confidence in detection, there was a need to characterise flaws to provide support and ascertain a repair action. Samples were produced that were subjected to either impact or heat exposure to induce realistic representative damage. The practical ultrasonic method was successfully used to independently characterise between the samples, with induced de-laminations caused by blisters, and multi layered matrix cracking caused by varying levels of projectile impacts, due to their unique morphology.
Fibre Volume Fraction, Carbon Fibre Reinforced Plastic, Composite Flaw Characterisation, Phased Array Ultrasonic Testing, Composite Repair, Glass Fibre Reinforced Plastic, Void Content
Fibre Volume Fraction, Carbon Fibre Reinforced Plastic, Composite Flaw Characterisation, Phased Array Ultrasonic Testing, Composite Repair, Glass Fibre Reinforced Plastic, Void Content
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
| views | 3 |

Views provided by UsageCounts