Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Current Computer - A...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Current Computer - Aided Drug Design
Article
License: CC 0
Data sources: UnpayWall
Current Computer - Aided Drug Design
Article . 2005 . Peer-reviewed
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Assessing QSAR Limitations - A Regulatory Perspective

Authors: Weida Tong; Huixiao Hong; Qian Xie; Leming Shi; Hong Fang; Roger Perkins;

Assessing QSAR Limitations - A Regulatory Perspective

Abstract

Wider acceptance of QSARs would result in a constellation of benefits and savings to both private and public sectors. For this to occur, particularly in regulatory applications, a models limitations need to be identified. We define a models limitations as encompassing assessment of overall prediction accuracy, applicability domain and chance correlation. A general guideline is presented in this review for assessing a models limitations with emphasis on and examples of application with consensus modeling methods. More specifically, we discuss the commonalities and differences between external validation and cross-validation for assessing a models limitations. We illustrate two common ways of assessing overall prediction accuracy, depending on whether or not the intended application domain is predefined. Since even a high quality model will have different confidence in accuracy for predicting different chemicals, we further demonstrate using the novel Decision Forest consensus modeling method a means to determine prediction confidence (i.e., certainty for an individual chemicals prediction) and domain extrapolation (i.e., the prediction accuracy for a chemical that is outside the chemistry space defined by the training chemicals). We show that prediction confidence and domain extrapolation are related measures that together determine the applicability domain of a model, and that prediction confidence is the more important measure. Lastly, the importance of assessing chance correlation is emphasized, and illustrated with several examples of models having a high degree of chance correlations despite cross-validation indicating high prediction accuracy. Generally, a dataset with a skewed distribution, small data size and/or low signal/noise ratio tends to produce a model with high chance correlation. We conclude that it is imperative to assess all three aspects (i.e., overall accuracy, applicability domain and chance correlation) of a model for the regulatory acceptance of QSARs.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    54
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 55
    download downloads 16
  • 55
    views
    16
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
54
Top 10%
Top 10%
Average
55
16
hybrid