Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Expert Review of Mol...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Expert Review of Molecular Diagnostics
Article
License: CC 0
Data sources: UnpayWall
Expert Review of Molecular Diagnostics
Article . 2011 . Peer-reviewed
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

RT-PCR/electrospray ionization mass spectrometry approach in detection and characterization of influenza viruses

Authors: Varough M, Deyde; Rangarajan, Sampath; Larisa V, Gubareva;

RT-PCR/electrospray ionization mass spectrometry approach in detection and characterization of influenza viruses

Abstract

Reverse-transcription PCR (RT-PCR) coupled with electrospray ionization mass spectrometry (ESI-MS) is a high-throughput nucleic acid-based technology that relies on the accurate measurement of the molecular weight of PCR amplicons that can be used to deduce the base counts (number of As, Gs, Cs and Ts) of DNA. These amplicons represent highly variable regions with information-rich sequences, which are flanked by broad-range primers designed based on highly conserved loci. This technology was first introduced in 2005 for microbial identification and subtyping, and was later applied to influenza virus detection and identification. The influenza RT-PCR/ESI-MS assay allows analysis of approximately 300 samples per 24 h, and aids in the characterization of influenza viruses based on their 'core' gene signatures. Notably, this assay was used to identify one of the first cases of the 2009 H1N1 pandemic viruses. One of the main advantages of the RT-PCR/ESI-MS technology is its universality and adaptability for pathogen characterization. Efforts are being made to customize the currently used influenza surveillance assay for use in the diagnosis of the H1N1 pandemic virus. In this article, we provide a summary of known applications of the RT-PCR/ESI-MS assay in the field of influenza.

Keywords

Spectrometry, Mass, Electrospray Ionization, Molecular Diagnostic Techniques, Reverse Transcriptase Polymerase Chain Reaction, Influenza, Human, Humans, Orthomyxoviridae

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    35
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 63
    download downloads 23
  • 63
    views
    23
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
35
Top 10%
Top 10%
Top 10%
63
23
hybrid