
doi: 10.1364/oe.15.005431
pmid: 19532797
We experimentally demonstrate efficient coupling of atomic fluorescence to the guided mode of a subwavelength-diameter silica fiber, an optical nanofiber. We show that fluorescence of a very small number of atoms, around the nanofiber can be readily observed through a single-mode optical fiber. We also show that such a technique enables us to probe the van der Waals interaction between atoms and surface with high precision by observing the fluorescence excitation spectrum through the nanofiber.
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 213 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
