Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Annals of the New Yo...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2004
License: CC 0
Data sources: ZENODO
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Annals of the New York Academy of Sciences
Article . 2004 . Peer-reviewed
License: Wiley Online Library User Agreement
Data sources: Crossref
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

New Therapeutic Strategies and Drug Candidates for Neurodegenerative Diseases: p53 and TNF‐α Inhibitors, and GLP‐1 Receptor Agonists

Authors: Kumar Sambamurti; Nigel H. Greig; Haim Ovadia; Sic L. Chan; Mark P. Mattson; Tracy Ann Perry; Debomoy K. Lahiri; +2 Authors

New Therapeutic Strategies and Drug Candidates for Neurodegenerative Diseases: p53 and TNF‐α Inhibitors, and GLP‐1 Receptor Agonists

Abstract

Abstract:Owing to improving preventative, diagnostic, and therapeutic measures for cardiovascular disease and a variety of cancers, the average ages of North Americans and Europeans continue to rise. Regrettably, accompanying this increase in life span, there has been an increase in the number of individuals afflicted with age‐related neurodegenerative disorders, such as Alzheimer's disease, Parkinson's disease, and stroke. Although different cell types and brain areas are vulnerable among these, each disorder likely develops from activation of a common final cascade of biochemical and cellular events that eventually lead to neuronal dysfunction and death. In this regard, different triggers, including oxidative damage to DNA, the overactivation of glutamate receptors, and disruption of cellular calcium homeostasis, albeit initiated by different genetic and/or environmental factors, can instigate a cascade of intracellular events that induce apoptosis. To forestall the neurodegenerative process, we have chosen specific targets to inhibit that are at pivotal rate‐limiting steps within the pathological cascade. Such targets include TNF‐α, p53, and GLP‐1 receptor. The cytokine TNF‐α is elevated in Alzheimer's disease, Parkinson's disease, stroke, and amyotrophic lateral sclerosis. Its synthesis can be reduced via posttranscriptional mechanisms with novel analogues of the classic drug, thalidomide. The intracellular protein and transcription factor, p53, is activated by the Alzheimer's disease toxic peptide, Aβ, as well as by excess glutamate and hypoxia to trigger neural cell death. It is inactivated by novel tetrahydrobenzothiazole and ‐oxazole analogues to rescue cells from lethal insults. Stimulation of the glucagon‐like peptide‐1 receptor (GLP‐1R) in brain is associated with neurotrophic functions that, additionally, can protect cells against excess glutamate and other toxic insults.

Keywords

Inflammation, Dose-Response Relationship, Drug, Models, Neurological, Neurodegenerative Diseases, Glucagon-Like Peptide-1 Receptor, Neoplasm Proteins, Tumor Necrosis Factor Decoy Receptors, Receptors, Glucagon, Animals, Humans, Receptors, Tumor Necrosis Factor, Type II, Tumor Suppressor Protein p53, Signal Transduction

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    99
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 262
    download downloads 37
  • 262
    views
    37
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
99
Top 10%
Top 10%
Top 10%
262
37
Green
hybrid