Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Parasites & Vect...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Parasites & Vectors
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
PubMed Central
Other literature type . 2023
License: CC BY
Data sources: PubMed Central
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Parasites & Vectors
Article . 2023
Data sources: DOAJ
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
ZENODO
Article . 2023
License: CC BY
Data sources: ZENODO
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Description of Sarcocystis platyrhynchosi n. sp. (Apicomplexa: Sarcocystidae) from domestic ducks Anas platyrhynchos (Anseriformes: Anatidae) in China

Authors: Hu, Junjie; Zhang, Mingzhu; Wu, Zhipeng; Zeng, Hongxia; Tao, Jianping;

Description of Sarcocystis platyrhynchosi n. sp. (Apicomplexa: Sarcocystidae) from domestic ducks Anas platyrhynchos (Anseriformes: Anatidae) in China

Abstract

Abstract Background Limited data are currently available on protozoan parasites of the genus Sarcocystis that infect their avian hosts within the order Anseriformes (waterfowl). To date, no Sarcocystis species has been recorded in ducks in China. Methods Leg muscles were sampled from 26 domestic ducks (Anas platyrhynchos) in China in 2021. Morphological characteristics of sarcocysts detected in the muscle tissue were described using light microscopy (LM) and transmission electron microscopy (TEM). Genomic DNA was extracted from single sarcocysts obtained from different ducks, and three genetic markers, 18S ribosomal DNA (18S rDNA), 28S ribosomal DNA (28S rDNA) and mitochondrial (mt) cytochrome oxidase subunit 1 (cox1), were amplified and cloned for sequence analyses. Results Sarcocysts were observed by LM in only three of the 28 samples (10.7%). These sarcocysts had a thick cyst wall with numerous brush-like villar protrusions (vps) of 3.8–4.3 μm in length (n = 30) on the cyst surface. TEM observation showed that the sarcocysts had lanceolated vps. Each vps narrowed in the stalk and contained a bundle of microtubules that extended into the ground substance. Comparisons of the new sequences with those deposited in GenBank showed that the most similar sequences were those of Sarcocystishalieti in the great cormorant Phalacrocorax carbo and European starling Sturnus vulgaris, and Sarcocystis calchasi in the domestic pigeon (Columba livia) at the 18S rDNA (99.1% identity); Sarcocystiswenzeli from the domestic chicken Gallus gallus at the 28S rDNA (95.9–96.0% identity); and Sarcocystis speeri from the opossum at the mtcox1 (98.2% identity). The new 18S rDNA, 28S rDNA and mitochondrial cox1 sequences shared up to 99.0%, 95.6% and 97.7% identity, respectively, with those of Sarcocystis spp. obtained from Anseriformes avian hosts. Phylogenetic analysis inferred from the sequences of the three genetic markers placed the organism within a group of Sarcocystis spp. obtained from avian or carnivorous intermediate hosts and avian, marsupial or carnivorous definitive hosts. Based on the morphological observation and molecular analyses, the organism found in the Chinese domestic ducks was regarded as a new species and named Sarcocystis platyrhynchosi n. sp. Conclusions Based on morphology and sequence analyses, the microcysts diagnosed in the domestic ducks examined in this study were named as a new species. This is the first record of Sarcocystis spp. from waterfowl in China. Sarcocysts of similar morphology occur frequently in different Anseriformes birds, and the relationships among these species need to be further clarified in future studies using more molecular markers. Graphical Abstract

Related Organizations
Keywords

Genetic Markers, China, Sarcocystosis, Anas platyrhynchos, Infectious and parasitic diseases, RC109-216, DNA, Ribosomal, Mitochondrial cox1, Microscopy, Electron, Transmission, Eucoccidiida, Anseriformes, RNA, Ribosomal, 18S, Animals, Columbidae, Phylogeny, Taxonomy, Chromista, 18S rDNA, 28S rDNA, Research, Sarcocystis, Biodiversity, Ducks, Ultrastructure, Sarcocystidae, Miozoa, Chickens

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    7
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
7
Top 10%
Average
Top 10%
Green
gold