<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
In this article, we uncover a network of Twitterbots comprising 13,493 accounts that tweeted the United Kingdom European Union membership referendum, only to disappear from Twitter shortly after the ballot. We compare active users to this set of political bots with respect to temporal tweeting behavior, the size and speed of retweet cascades, and the composition of their retweet cascades (user-to-bot vs. bot-to-bot) to evidence strategies for bot deployment. Our results move forward the analysis of political bots by showing that Twitterbots can be effective at rapidly generating small- to medium-sized cascades; that the retweeted content comprises user-generated hyperpartisan news, which is not strictly fake news, but whose shelf life is remarkably short; and, finally, that a botnet may be organized in specialized tiers or clusters dedicated to replicating either active users or content generated by other bots.
JN101, QA75, PN, JN
JN101, QA75, PN, JN
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 275 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 0.1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |