Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Indonesian Journal o...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Indonesian Journal of Electrical Engineering and Computer Science
Article . 2023 . Peer-reviewed
License: CC BY NC
Data sources: Crossref
versions View all 1 versions
addClaim

Implementation of a secure wireless communication system using true random number generator for internet of things

Authors: Huirem Bharat Meitei; Manoj Kumar;

Implementation of a secure wireless communication system using true random number generator for internet of things

Abstract

This paper describes the design and implementation of an internet of thing (IoT)-based application that uses a true random number generator (TRNG) with an all digital phase locked loop (ADPLL) for secure wireless communication. Field programmable gate array (FPGA) boards were used on the transmitter and receiver sides and were interfaced with Esp8266 chips to wirelessly send and receive encrypted sensor data. The MQ-2 gas sensor and tracking sensor were connected to the FPGA board on the transmitter side, where data from the sensors was encrypted using the exclusive-OR (XOR) function and the TRNG architecture. The system can be controlled by users through a web browser served by the ThingSpeak cloud. The Artix-7 FPGA device is used to implement the proposed wireless communication system, for which design and synthesis were done using the Xilinx Vivado 2015.2 tool. The proposed system uses a low amount of power and is suitable for a standalone, highly secure TRNG-based IoT application. The National Institute of Standard and Testing (NIST SP 800-22) test showed that ADPLL with finite impulse response (FIR) filter-based TRNGs are better for encrypting IoT devices for secure wireless communication.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
    OpenAIRE UsageCounts
    Usage byUsageCounts
    visibility views 5
    download downloads 7
  • 5
    views
    7
    downloads
    Powered byOpenAIRE UsageCounts
Powered by OpenAIRE graph
Found an issue? Give us feedback
visibility
download
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
views
OpenAIRE UsageCountsViews provided by UsageCounts
downloads
OpenAIRE UsageCountsDownloads provided by UsageCounts
1
Average
Average
Average
5
7
gold