
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
Web bots are vital for the web as they can be used to automate several actions, some of which would have otherwise been impossible or very time consuming. These actions can be benign, such as website testing and web indexing, or malicious, such as unauthorised content scraping, scalping, vulnerability scanning, and more. To detect malicious web bots, recent approaches examine the visitors' fingerprint and behaviour. For the latter, several values (i.e., features) are usually extracted from visitors' web logs and used as input to train machine learning models. In this research we show that web bots can use recent advances in machine learning, and, more specifically, Reinforcement Learning (RL), to effectively evade behaviour-based detection techniques. To evaluate these evasive bots, we examine (i) how well they can evade a pre-trained bot detection framework, (ii) how well they can still evade detection after the detection framework is re-trained on new behaviours generated from the evasive web bots, and (iii) how bots perform if re-trained again on the re-trained detection framework. We show that web bots can repeatedly evade detection and adapt to the re-trained detection framework to showcase the importance of considering such types of bots when designing web bot detection frameworks.
reinforcement learning, advanced web bots, web bot detection, web logs, evasive web bots
reinforcement learning, advanced web bots, web bot detection, web logs, evasive web bots
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
views | 3 | |
downloads | 38 |