Downloads provided by UsageCounts
A key idea in many-objective optimization is to approximate the optimal Pareto front using a set of representative non-dominated solutions. The produced solution set should be close to the optimal front (convergence) and well-diversified (diversity). Recent studies have shown that measuring both convergence and diversity depends on the shape (or curvature) of the Pareto front. In recent years, researchers have proposed evolutionary algorithms that model the shape of the non-dominated front to define environmental selection strategies that adapt to the underlying geometry. This paper proposes a novel method for non-dominated front modeling using the Newton-Raphson iterative method for roots finding. Second, we compute the distance (diversity) between each pair of non-dominated solutions using geodesics, which are generalizations of the distance on Riemann manifolds (curved topological spaces). We have introduced an evolutionary algorithm within the Adaptive Geometry Estimation based MOEA (AGE-MOEA) framework, which we called AGE-MOEA-II. Computational experiments with 17 problems from the WFG and SMOP benchmarks show that AGE-MOEA-II outperforms its predecessor AGE-MOEA as well as other state-of-the-art many-objective algorithms, i.e., NSGA-III, MOEA/D, VaEA, and LMEA.
Software Engineering
Newton-Raphson (N-R) method, Geodesic distance, Multi-objective Optimisation, Evolutionary algorithms
Newton-Raphson (N-R) method, Geodesic distance, Multi-objective Optimisation, Evolutionary algorithms
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 70 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
| views | 42 | |
| downloads | 14 |

Views provided by UsageCounts
Downloads provided by UsageCounts