Downloads provided by UsageCounts
When deploying machine learning (ML) models on embedded and IoT devices, performance encompasses more than an accuracy metric: inference latency, energy consumption, and model fairness are necessary to ensure reliable performance under heterogeneous and resource-constrained operating conditions. To this end, prior research has studied model-centric approaches, such as tuning the hyperparameters of the model during training and later applying model compression techniques to tailor the model to the resource needs of an embedded device. In this paper, we take a data-centric view of embedded ML and study the role that pre-processing parameters in the data pipeline can play in balancing the various performance metrics of an embedded ML system. Through an in-depth case study with audio-based keyword spotting (KWS) models, we show that pre-processing parameter tuning is a remarkable tool that model developers can adopt to trade-off between a model's accuracy, fairness, and system efficiency, as well as to make an embedded ML model resilient to unseen deployment conditions.
fairness, embedded machine learning, pre-processing parameters, audio keyword spotting
fairness, embedded machine learning, pre-processing parameters, audio keyword spotting
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
| views | 24 | |
| downloads | 24 |

Views provided by UsageCounts
Downloads provided by UsageCounts